Flow and transport in fractured porous media: with 65 tables
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 421 - 442 |
Beschreibung: | XVIII, 447 S. Ill., graph. Darst., Kt. |
ISBN: | 3540232702 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV020837607 | ||
003 | DE-604 | ||
005 | 20060904 | ||
007 | t | ||
008 | 051019s2005 gw abd| |||| 00||| eng d | ||
016 | 7 | |a 972138781 |2 DE-101 | |
020 | |a 3540232702 |9 3-540-23270-2 | ||
035 | |a (OCoLC)59615548 | ||
035 | |a (DE-599)BVBBV020837607 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-12 |a DE-634 | ||
050 | 0 | |a QC173.4.P67 | |
082 | 0 | |a 620.1/16 |2 22 | |
084 | |a 550 |2 sdnb | ||
245 | 1 | 0 | |a Flow and transport in fractured porous media |b with 65 tables |c P. Dietrich ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a XVIII, 447 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 421 - 442 | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Porous materials |v Mathematical models | |
650 | 4 | |a Porous materials |x Fluid dynamics | |
650 | 0 | 7 | |a Grundwasserleiter |0 (DE-588)4022375-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stoffübertragung |0 (DE-588)4057696-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klüftung |0 (DE-588)4198409-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grundwasserstrom |0 (DE-588)4121396-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Grundwasserleiter |0 (DE-588)4022375-9 |D s |
689 | 0 | 1 | |a Klüftung |0 (DE-588)4198409-2 |D s |
689 | 0 | 2 | |a Grundwasserstrom |0 (DE-588)4121396-8 |D s |
689 | 0 | 3 | |a Stoffübertragung |0 (DE-588)4057696-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dietrich, Peter |e Sonstige |4 oth | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014159526&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014159526 |
Datensatz im Suchindex
_version_ | 1804134543288958976 |
---|---|
adam_text | CONTENTS
PART
IA
SSESSMENT
OF
FRACTUREDP
OROUSM
EDIA
1A
QUIFER-ANALOGUEA
PPROACH
..
.....
.....
......
.....
.....
.....
3
1.1O
CCURRENCE
OF
FRACTURED
ROCK
AQUIFERS
..
....
.....
....
.....
.5
1.2C
HARACTERIZATIONO
FT
HE
HYDRAULICP
RO
PERTIESO
FF
RACTURED
ROCK
AQUIFERS
....
.....
.....
.....
.....
.....
.....
....
.....
.5
1.2.1F
RACTUREC
HARACTERIZATIONA
ND
FLOWP
RO
CESSESI
N
INDIVIDUAL
FRACTURES
..
.....
.....
.....
.....
....
.....
.6
1.2.2F
LOWP
RO
CESSESI
NF
RACTUREN
ETWORKS
..
....
....
.....
.7
1.2.3U
NSATURATED
FLOWP
RO
CESSESI
NF
RACTURED
SYSTEMS.
..
.9
1.3A
QUIFER
GENESIS
APPROACHES
FORT
HE
ASSESSMENT
OF
HYDRAULICC
HARACTERISTICSO
FG
EOLOGICAL
MATERIALS.
....
.....
.1
0
1.3.1A
QUIFER
SEDIMENTOLOGY.
...
.....
.....
.....
....
.....
.1
0
1.3.2G
ENESIS
OF
FRACTUREN
ETWORKS
...
.....
.....
....
.....
.1
1
1.4T
HE
AQUIFER
ANALOGUE
APPROACH
FORF
RACTURED
PORO
US
AQUIFERS
....
.....
.....
.....
.....
.....
.....
.....
....
.....
.1
1
1.4.1O
BJECTIVES
..
....
.....
.....
.....
.....
.....
....
.....
.1
2
1.4.2C
ONCEPT
...
.....
.....
.....
.....
.....
.....
....
.....
.1
2
2F
ROMN
ATURALS
YSTEMTO
NUMERICALM
ODEL
......
.....
.....
.....
15
2.1N
ATURAL
FRACTURED
PORO
US
SYSTEMS.
....
.....
.....
....
.....
.1
6
2.2M
ODEL
CONCEPTSI
NF
RACTURED
PORO
US
SYSTEMS.
....
....
.....
.2
4
2.3G
OVERNINGE
QUATIONS
OF
FLOWA
ND
TR
ANSPORTI
NP
OROUSM
EDIA2
6
2.3.1R
EPRESENTATIVE
ELEMENTARY
VO
LUME
...
.....
....
.....
.2
7
2.3.2F
LOWP
RO
CESSES.
..
....
.....
.....
.....
.....
....
.....
.2
7
2.3.3T
RANSPORTP
RO
CESSES.
..
.....
.....
.....
.....
....
.....
.3
0
2.4T
HE
DISCRE
TE
MODEL
CONCEPT
..
....
.....
.....
.....
....
.....
.3
2
2.4.1P
ARALLEL-PLATE
CONCEPT
.....
.....
.....
.....
....
.....
.3
3
2.4.2G
ENERATIONO
FF
RACTURES
TRUCTURAL
MODELS-
FRAC3D
..
35
2.4.3S
PATIALA
ND
TE
MPORAL
DISCRE
TIZATION.
..
....
....
.....
.4
2
2.4.4A
PPLIEDN
UMERICALM
ODEL
-M
UFTE-UG..
..
...
.....
.4
3
XC
ONTENTS
2.4.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 4
3
2.5 IMPLEMENTATION OF THE MULTI-CONTINUUM CONCEPT . . . . . . . . . . .
4
4
2.5.1 GOV
ERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 4
4
2.5.2 TY
PES OF COUPLING . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 47
2.5.3 EXCHANGE FORMULATION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 47
2.5.4 NUMERICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 5
1
2.5.5 DETERMINATION OF EQUIVALENT PARAMETERS . . . . . . . . . . . . . 5
2
2.5.6 CHARACTERISTIC VALUES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 54
2.5.7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 6
0
2.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 6
1
PART
II
PROJECTS
CALE
STUDIES
3C
ORE SCALE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 65
3.1 SAMPLE CHARACTERIZATION . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 65
3.2 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 67
3.2.1 FRACTURE G
EOMETRY INVESTIGATIONS . . . . . . . . . . . . . . . . . . . . 6
7
3.2.2 HYDRAULIC AND PNEUMATIC EXPERIMENTS . . . . . . . . . . . . . . 83
3.3 INTERPRETATION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 86
3.3.1 EFFECTIVE CONDUCTIVITIES OBTAINED F
RO
M FRACTURE
GEOMETRY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 87
3.3.2 PERMEABILITIES OBTAINED F
RO
M HYDRAULIC AND
PNEUMATIC TE
STS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 91
3.3.3 COMPARISON OF CONDUCTIVITIES . . . . . . . . . . . . . . . . . . .
. . . . 97
3.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1
01
4B
ENCH SCALE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 103
4.1 PREPARATION OF FRACTURE PORO
US BENCH S
CALE SAMPLES . . . . . . . . . 103
4.1.1 RECOVERY AND PRE
PARATION OF THE CYLINDRICAL BENCH
SCALE SAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 104
4.1.2 RECOVERY AND PRE
PARATION OF THE BLOCK SAMPLES . . . . . . . 109
4.2 FLOW AND TR
ANSPORT EXPERIMENTS CONDUCTED
ON LABORATORY CYLINDERS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 127
4.2.1 APPLICATION AND METHOD . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 1
27
4.2.2 TE
CHNICAL DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 1
29
4.2.3 PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 131
4.2.4 FLEXIBILITY OF THE MIOJ . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1
34
4.2.5 FLOW EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 138
4.2.6 TR
ANSPORT EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 140
4.2.7 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 141
4.3 INTERPRETATION OF EXPERIMENTS CONDUCTED
ON LABORATORY CYLINDERS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 142
4.3.1 SENSITIVITY ANALYSIS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
CONTENTS
XI
4.3.2 COMPARISON OF M
EASURE
D AND SIMULATED
TR
ACER-BREAKTHROUGH C
URVES . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3.3 DETERMINATION OF EQUIVALENT PARAMETERS . . . . . . . . . . . . . 1
54
4.3.4 MULTI-CONTINUUM MODELING:
METHODOLOGY ANDAPPROACH . . . . . . . . . . . . . . . . . . . . . . . .
. 158
4.4 FLOW AND TR
ANSPORT EXPERIMENTS CONDUCTED
ON LABORATORY BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1
74
4.4.1 INTEGRAL MEASURING C
ONFIG
URATION . . . . . . . . . . . . . . . . . . . 174
4.4.2 PORT-PORT MEASURING CONFIGURATION . . . . . . . . . . . . . . . .
. . 179
4.5 INTERPRETATION OF EXPERIMENTS CONDUCTED
ON LABORATORY BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 197
4.5.1 INTERPRETATION OF FLOW AND TR
ANSPORT EXPERIMENTS
BASED ON APPARE
NT P
ARAMETERS . . . . . . . . . . . . . . . . . . . . . . 1
97
4.5.2 MULTI-CONTINUUM MODELING:
METHODOLOGY ANDAPPROACH . . . . . . . . . . . . . . . . . . . . . . . .
. 201
5F
IELD-BLOCK SCALE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 209
5.1 CHOICE OF THE FIELD BLOCK LOCATION . . . . . . . . . . . . . . . . .
. . . . . . . . . 210
5.1.1 REGIONAL POSITIONING . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 2
10
5.1.2 LOCAL POSITIONING . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 2
13
5.2 PREPARING A TE
ST SITE ON THE FIELD-BLOCK SCALE . . . . . . . . . . . . . . . . 215
5.2.1 EXCAVATING AND CUTTING . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 216
5.2.2 SEALING PRO
CESS AND INSTALLATIONS . . . . . . . . . . . . . . . . . . . . . 219
5.3 CHARACTERIZATION OF THE ROCK-MATRIX AND FRACTURE
-SYSTEM . . . . 2
23
5.3.1 STATISTICAL EVALUATION OF FRACTURE PARAMETERS. . . . . . . . . .
224
5.3.2 DETERMINATION OF ROC
K-MATRIX PROPERTIES . . . . . . . . . . . . . 228
5.4 GEOSTATISTICAL ANALYSIS OF THE FRACTURE LENGTHS
AND FRACTURE D
ISTANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 2
35
5.4.1 STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 2
35
5.4.2 GEOSTATISTICAL ANALYSIS OF THE SIDE WALLS . . . . . . . . . . . .
. . 2
39
5.4.3 DISCUSSION OF THE RESULTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 246
5.5 ORIENTATING MEASURE
MENTS AT T
HE UNSEALED FIELD BLOCK . . . . . . 253
5.5.1 CONNECTIVITY AND FLOW TE
STS . . . . . . . . . . . . . . . . . . . . . . . . 254
5.5.2 ELECTROMAGNETIC R
EFLECTION METHOD . . . . . . . . . . . . . . . . . . 2
54
5.6 FLOW AND TR
ANSPORT TE
STS AT THE SEALED FIELD BLOCK . . . . . . . . . . . 257
5.6.1 TR
ACER I
NJECTION AND DETECTION TECHNIQUES . . . . . . . . . . . . 2
58
5.6.2 MEASUREMENTS AT M
ARGINAL B
OREHOLES . . . . . . . . . . . . . . . . 2
61
5.6.3 MEASUREMENTS AT C
ENTRAL B
OREHOLES . . . . . . . . . . . . . . . . . . 269
5.6.4 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 276
5.7 APPLICATION OF THE DISCRETE MODEL ON THE FIELD-BLOCK SCALE . . 2
77
5.7.1 DETERMINISTIC FRACTURE MODEL F
OR THE SOUTH-EAST/EAST
AREA A
ND BOUNDARY CONDITIONS . . . . . . . . . . . . . . . . . . . . . . 278
5.7.2 TW
O-DIMENSIONAL CASE STUDY: SIMULATION 1 . . . . . . . . . . 2
78
5.7.3 TW
O-DIMENSIONAL CASE STUDY: SIMULATION 2 . . . . . . . . . . 2
81
5.7.4 COMPARING MEASURE
D AND NUMERICAL RESULTS . . . . . . . . 286
XIIC
ONTENTS
5.8 INTEGRAL TRANSPORT BEHAVIOR ON THE FIELD-BLOCK SCALE . . . . . . . .
2
87
5.8.1 MODEL A
RE
A AND BOUNDARY C
ONDITIONS . . . . . . . . . . . . . . . 287
5.8.2 AQUIFER PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 289
5.8.3 ONE-DIMENSIONA
L CASE S
TUDY . . . . . . . . . . . . . . . . . . . . . . . 290
5.8.4 THRE
E-DIMENSIONAL CASE S
TUDY . . . . . . . . . . . . . . . . . . . . . . 290
5.9 A STUDY CONCERNING BOUNDARY EFF
ECTS
ON THE FIELD-BLOCK SCALE .. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 293
5.9.1 MODEL D
ESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 294
5.9.2 MATERIAL P
RO
PERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 294
5.9.3 FLOW SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 2
95
5.9.4 TR
ANSPORT SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 2
97
5.9.5 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 300
PART
III
SCALE-INDEPENDENT
APPROACHESANDI
NVESTIGATIONS
6T
HE MULTI-SHELL MODEL - A CONCEPTUAL MODEL APPROACH
. . . . . . . . 305
6.1 MODEL P
RINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 3
06
6.2 DEVELOPING THE MODEL . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 3
08
6.3 BOUNDARY C
ONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 310
6.4 COMPARISON WITH ONE-DIMENSIONA
L FLOW MODEL . . . . . . . . . . . . 3
12
6.5 CALCULATION OF THE TR
ACER B
RE
AKTHROUGH C
URVES . . . . . . . . . . . . . . 313
6.6 EXPERIMENTAL AND NUMERICAL CONFIRMATION . . . . . . . . . . . . . .
. . . 315
6.7 TR
ACER D
ISTRIBUTION IN A T
WO-DIMENSIONAL AND THRE
E
DIMENSIONAL FLOW SYSTEM . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 315
6.8 APPLICATION OF M
ULTI-SHELL MODEL T
O INVESTIGATE THE
ANISOTROPIC NATURE . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 319
6.9 PR´E
CIS OF THE DEVELOPMENT OF THE MULTI-SHELL MODEL . . . . . . . . . 3
20
7T
HE SENSITIVITY C
OEFFI
CIENT APPROACH
. . . . . . . . . . . . . . . . . . . . . . . . . 323
7.1 GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 3
23
7.1.1 GOV
ERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 3
23
7.1.2 GOV
ERNING SENSITIVITY EQUATION . . . . . . . . . . . . . . . . . . . . . 3
24
7.2 CALCULATION OF THE PARAMETER DERIVATIVE
YY
U
/
YY
K
. . . . . . . . . . . . . . 324
7.2.1 INFLUENCE COEFFICIENT METHOD . . . . . . . . . . . . . . . . . . .
. . . . . 3
25
7.2.2 SENSITIVITY EQUATION METHOD . . . . . . . . . . . . . . . . . . .
. . . . . 3
25
7.2.3 ADJOINT-STATE METHOD . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 325
7.3 PERFORMANCE OF THE SENSITIVITY COEFFICIENT A
PPROACH . . . . . . . . . 328
7.3.1 NUMERICAL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . .
. . . . 3
28
7.3.2 APPLICATION OF ANALYTICAL S
OLUTIONS . . . . . . . . . . . . . . . . . . 3
32
7.4 ANALYSIS OF SENSITIVITY COEFFICIENT D
ISTRIBUTIONS . . . . . . . . . . . . . 3
33
7.4.1 SOME GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . .
. . . . 3
33
7.4.2 SENSITIVITY WITH RESPECT TO HYDRAULIC CONDUCTIVITY . . . 334
7.4.3 SENSITIVITY WITH RESPECT TO STORAGE . . . . . . . . . . . . . . .
. . . . 338
CONTENTS
XIII
7.4.4 SENSITIVITY DISTRIBUTION FOR DIFF
ERENT HYDRAULIC TE
ST
CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 3
39
7.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 3
43
8D
IFFUSIVITY M
EASUREMENTS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
347
8.1 CONCEPT OF THE DIFF
USIVITY APPROACH . . . . . . . . . . . . . . . . . . . . . . . 347
8.2 INVERSION APPROACH . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 349
8.3 APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 351
8.4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 3
56
9A
NALYSIS OF THE INFLUENCE OF BOUNDARIES
. . . . . . . . . . . . . . . . . . . . . . . 357
9.1 QUALITATIVE ANALYSIS OF THE BOUNDARY I
NFLUENCE . . . . . . . . . . . . . 358
9.1.1 MODEL S
ET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 3
58
9.1.2 ANALYSIS OF THE BREAKTHRO
UGH CURVES . . . . . . . . . . . . . . . . 359
9.1.3 ANALYSIS OF CHARACTERISTIC PARAMETERS . . . . . . . . . . . . . .
. . 3
63
9.2 NORMALIZATION OF TRACER-BREAKTHROUGH C
URVES . . . . . . . . . . . . . . 365
9.2.1 DEVELOPMENT OF THE NORMALIZATION CONCEPT . . . . . . . . . . 3
65
9.2.2 APPLICATION TO HETERO
GENEOUS DOMAINS . . . . . . . . . . . . . . 369
9.3 SUMMARY A
ND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 3
74
10 A MULTIVARIATE STATISTICAL A
PPROACH
. . . . . . . . . . . . . . . . . . . . . . . . . . . 375
10.1 A MULTIVARIATE S
TATISTICAL A
PPROACH FOR EVALUATING
EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 376
10.1.1 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 377
10.1.2 DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 3
77
10.1.3 DEFINITION OF V
ARIABLES CHARACTERIZING FLOW AND
TR
ANSPORT PROCESSES. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 3
79
10.1.4 REDUCING THE MULTIDIMENSIONAL VA
RIABLE S
PACE . . . . . . . 380
10.1.5 PROCESSING OF DATA . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 382
10.1.6 CLASSIFICATION OF T
HE F
LOW AND TR
ANSPORT DATA BY
USING K-MEANS CLUSTER ANALYSIS . . . . . . . . . . . . . . . . . . . . .
385
10.1.7 RESULTS AND INTERPRETATION . . . . . . . . . . . . . . . . . . .
. . . . . . . . 385
10.1.8 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . 3
87
10.2 DETERMINATION OF DOMAIN PRO
PERTIES AND VERIFICATION
OF THE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 389
10.2.1 DETERMINATION OF PERMEABILITIES . . . . . . . . . . . . . . . . .
. . . . 389
10.2.2 SET-UP O
F THE NUMERICAL MODEL . . . . . . . . . . . . . . . . . . . . . . 3
94
10.2.3 DISCUSSION OF THE RESULTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 396
10.2.4 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 400
10.3 CLUSTER ANALYSIS TO SET UP A CONCEPTUAL
MULTI-CONTINUUM MODEL . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 4
00
10.3.1 THE DISCRE
TE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 4
01
10.3.2 MULTI-CONTINUUM MODEL . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 4
07
10.3.3 COMPARISON OF
CLASSICAL
AND
NEW
APPROACH . . . . . . . . . . 413
XIVC
ONTENTS
10.3.4 UPSCALING OF THE MULTI-CONTINUUM MODEL . . . . . . . . . . . . 4
15
10.3.5 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 419
REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 421
NOMENCLATURE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 443
|
adam_txt |
CONTENTS
PART
IA
SSESSMENT
OF
FRACTUREDP
OROUSM
EDIA
1A
QUIFER-ANALOGUEA
PPROACH
.
.
.
.
.
.
.
3
1.1O
CCURRENCE
OF
FRACTURED
ROCK
AQUIFERS
.
.
.
.
.
.5
1.2C
HARACTERIZATIONO
FT
HE
HYDRAULICP
RO
PERTIESO
FF
RACTURED
ROCK
AQUIFERS
.
.
.
.
.
.
.
.
.
.5
1.2.1F
RACTUREC
HARACTERIZATIONA
ND
FLOWP
RO
CESSESI
N
INDIVIDUAL
FRACTURES
.
.
.
.
.
.
.
.6
1.2.2F
LOWP
RO
CESSESI
NF
RACTUREN
ETWORKS
.
.
.
.
.7
1.2.3U
NSATURATED
FLOWP
RO
CESSESI
NF
RACTURED
SYSTEMS.
.
.9
1.3A
QUIFER
GENESIS
APPROACHES
FORT
HE
ASSESSMENT
OF
HYDRAULICC
HARACTERISTICSO
FG
EOLOGICAL
MATERIALS.
.
.
.1
0
1.3.1A
QUIFER
SEDIMENTOLOGY.
.
.
.
.
.
.
.1
0
1.3.2G
ENESIS
OF
FRACTUREN
ETWORKS
.
.
.
.
.
.1
1
1.4T
HE
AQUIFER
ANALOGUE
APPROACH
FORF
RACTURED
PORO
US
AQUIFERS
.
.
.
.
.
.
.
.
.
.
.1
1
1.4.1O
BJECTIVES
.
.
.
.
.
.
.
.
.
.1
2
1.4.2C
ONCEPT
.
.
.
.
.
.
.
.
.
.1
2
2F
ROMN
ATURALS
YSTEMTO
NUMERICALM
ODEL
.
.
.
.
15
2.1N
ATURAL
FRACTURED
PORO
US
SYSTEMS.
.
.
.
.
.
.1
6
2.2M
ODEL
CONCEPTSI
NF
RACTURED
PORO
US
SYSTEMS.
.
.
.
.2
4
2.3G
OVERNINGE
QUATIONS
OF
FLOWA
ND
TR
ANSPORTI
NP
OROUSM
EDIA2
6
2.3.1R
EPRESENTATIVE
ELEMENTARY
VO
LUME
.
.
.
.
.2
7
2.3.2F
LOWP
RO
CESSES.
.
.
.
.
.
.
.
.
.2
7
2.3.3T
RANSPORTP
RO
CESSES.
.
.
.
.
.
.
.
.3
0
2.4T
HE
DISCRE
TE
MODEL
CONCEPT
.
.
.
.
.
.
.
.3
2
2.4.1P
ARALLEL-PLATE
CONCEPT
.
.
.
.
.
.
.3
3
2.4.2G
ENERATIONO
FF
RACTURES
TRUCTURAL
MODELS-
FRAC3D
.
35
2.4.3S
PATIALA
ND
TE
MPORAL
DISCRE
TIZATION.
.
.
.
.
.4
2
2.4.4A
PPLIEDN
UMERICALM
ODEL
-M
UFTE-UG.
.
.
.
.4
3
XC
ONTENTS
2.4.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 4
3
2.5 IMPLEMENTATION OF THE MULTI-CONTINUUM CONCEPT . . . . . . . . . . .
4
4
2.5.1 GOV
ERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 4
4
2.5.2 TY
PES OF COUPLING . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 47
2.5.3 EXCHANGE FORMULATION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 47
2.5.4 NUMERICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 5
1
2.5.5 DETERMINATION OF EQUIVALENT PARAMETERS . . . . . . . . . . . . . 5
2
2.5.6 CHARACTERISTIC VALUES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 54
2.5.7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 6
0
2.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 6
1
PART
II
PROJECTS
CALE
STUDIES
3C
ORE SCALE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 65
3.1 SAMPLE CHARACTERIZATION . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 65
3.2 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 67
3.2.1 FRACTURE G
EOMETRY INVESTIGATIONS . . . . . . . . . . . . . . . . . . . . 6
7
3.2.2 HYDRAULIC AND PNEUMATIC EXPERIMENTS . . . . . . . . . . . . . . 83
3.3 INTERPRETATION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 86
3.3.1 EFFECTIVE CONDUCTIVITIES OBTAINED F
RO
M FRACTURE
GEOMETRY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 87
3.3.2 PERMEABILITIES OBTAINED F
RO
M HYDRAULIC AND
PNEUMATIC TE
STS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 91
3.3.3 COMPARISON OF CONDUCTIVITIES . . . . . . . . . . . . . . . . . . .
. . . . 97
3.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1
01
4B
ENCH SCALE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 103
4.1 PREPARATION OF FRACTURE PORO
US BENCH S
CALE SAMPLES . . . . . . . . . 103
4.1.1 RECOVERY AND PRE
PARATION OF THE CYLINDRICAL BENCH
SCALE SAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 104
4.1.2 RECOVERY AND PRE
PARATION OF THE BLOCK SAMPLES . . . . . . . 109
4.2 FLOW AND TR
ANSPORT EXPERIMENTS CONDUCTED
ON LABORATORY CYLINDERS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 127
4.2.1 APPLICATION AND METHOD . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 1
27
4.2.2 TE
CHNICAL DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 1
29
4.2.3 PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 131
4.2.4 FLEXIBILITY OF THE MIOJ . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1
34
4.2.5 FLOW EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 138
4.2.6 TR
ANSPORT EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 140
4.2.7 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 141
4.3 INTERPRETATION OF EXPERIMENTS CONDUCTED
ON LABORATORY CYLINDERS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 142
4.3.1 SENSITIVITY ANALYSIS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
CONTENTS
XI
4.3.2 COMPARISON OF M
EASURE
D AND SIMULATED
TR
ACER-BREAKTHROUGH C
URVES . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3.3 DETERMINATION OF EQUIVALENT PARAMETERS . . . . . . . . . . . . . 1
54
4.3.4 MULTI-CONTINUUM MODELING:
METHODOLOGY ANDAPPROACH . . . . . . . . . . . . . . . . . . . . . . . .
. 158
4.4 FLOW AND TR
ANSPORT EXPERIMENTS CONDUCTED
ON LABORATORY BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1
74
4.4.1 INTEGRAL MEASURING C
ONFIG
URATION . . . . . . . . . . . . . . . . . . . 174
4.4.2 PORT-PORT MEASURING CONFIGURATION . . . . . . . . . . . . . . . .
. . 179
4.5 INTERPRETATION OF EXPERIMENTS CONDUCTED
ON LABORATORY BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 197
4.5.1 INTERPRETATION OF FLOW AND TR
ANSPORT EXPERIMENTS
BASED ON APPARE
NT P
ARAMETERS . . . . . . . . . . . . . . . . . . . . . . 1
97
4.5.2 MULTI-CONTINUUM MODELING:
METHODOLOGY ANDAPPROACH . . . . . . . . . . . . . . . . . . . . . . . .
. 201
5F
IELD-BLOCK SCALE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 209
5.1 CHOICE OF THE FIELD BLOCK LOCATION . . . . . . . . . . . . . . . . .
. . . . . . . . . 210
5.1.1 REGIONAL POSITIONING . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 2
10
5.1.2 LOCAL POSITIONING . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 2
13
5.2 PREPARING A TE
ST SITE ON THE FIELD-BLOCK SCALE . . . . . . . . . . . . . . . . 215
5.2.1 EXCAVATING AND CUTTING . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 216
5.2.2 SEALING PRO
CESS AND INSTALLATIONS . . . . . . . . . . . . . . . . . . . . . 219
5.3 CHARACTERIZATION OF THE ROCK-MATRIX AND FRACTURE
-SYSTEM . . . . 2
23
5.3.1 STATISTICAL EVALUATION OF FRACTURE PARAMETERS. . . . . . . . . .
224
5.3.2 DETERMINATION OF ROC
K-MATRIX PROPERTIES . . . . . . . . . . . . . 228
5.4 GEOSTATISTICAL ANALYSIS OF THE FRACTURE LENGTHS
AND FRACTURE D
ISTANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 2
35
5.4.1 STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 2
35
5.4.2 GEOSTATISTICAL ANALYSIS OF THE SIDE WALLS . . . . . . . . . . . .
. . 2
39
5.4.3 DISCUSSION OF THE RESULTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 246
5.5 ORIENTATING MEASURE
MENTS AT T
HE UNSEALED FIELD BLOCK . . . . . . 253
5.5.1 CONNECTIVITY AND FLOW TE
STS . . . . . . . . . . . . . . . . . . . . . . . . 254
5.5.2 ELECTROMAGNETIC R
EFLECTION METHOD . . . . . . . . . . . . . . . . . . 2
54
5.6 FLOW AND TR
ANSPORT TE
STS AT THE SEALED FIELD BLOCK . . . . . . . . . . . 257
5.6.1 TR
ACER I
NJECTION AND DETECTION TECHNIQUES . . . . . . . . . . . . 2
58
5.6.2 MEASUREMENTS AT M
ARGINAL B
OREHOLES . . . . . . . . . . . . . . . . 2
61
5.6.3 MEASUREMENTS AT C
ENTRAL B
OREHOLES . . . . . . . . . . . . . . . . . . 269
5.6.4 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 276
5.7 APPLICATION OF THE DISCRETE MODEL ON THE FIELD-BLOCK SCALE . . 2
77
5.7.1 DETERMINISTIC FRACTURE MODEL F
OR THE SOUTH-EAST/EAST
AREA A
ND BOUNDARY CONDITIONS . . . . . . . . . . . . . . . . . . . . . . 278
5.7.2 TW
O-DIMENSIONAL CASE STUDY: SIMULATION 1 . . . . . . . . . . 2
78
5.7.3 TW
O-DIMENSIONAL CASE STUDY: SIMULATION 2 . . . . . . . . . . 2
81
5.7.4 COMPARING MEASURE
D AND NUMERICAL RESULTS . . . . . . . . 286
XIIC
ONTENTS
5.8 INTEGRAL TRANSPORT BEHAVIOR ON THE FIELD-BLOCK SCALE . . . . . . . .
2
87
5.8.1 MODEL A
RE
A AND BOUNDARY C
ONDITIONS . . . . . . . . . . . . . . . 287
5.8.2 AQUIFER PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 289
5.8.3 ONE-DIMENSIONA
L CASE S
TUDY . . . . . . . . . . . . . . . . . . . . . . . 290
5.8.4 THRE
E-DIMENSIONAL CASE S
TUDY . . . . . . . . . . . . . . . . . . . . . . 290
5.9 A STUDY CONCERNING BOUNDARY EFF
ECTS
ON THE FIELD-BLOCK SCALE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 293
5.9.1 MODEL D
ESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 294
5.9.2 MATERIAL P
RO
PERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 294
5.9.3 FLOW SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 2
95
5.9.4 TR
ANSPORT SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 2
97
5.9.5 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 300
PART
III
SCALE-INDEPENDENT
APPROACHESANDI
NVESTIGATIONS
6T
HE MULTI-SHELL MODEL - A CONCEPTUAL MODEL APPROACH
. . . . . . . . 305
6.1 MODEL P
RINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 3
06
6.2 DEVELOPING THE MODEL . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 3
08
6.3 BOUNDARY C
ONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 310
6.4 COMPARISON WITH ONE-DIMENSIONA
L FLOW MODEL . . . . . . . . . . . . 3
12
6.5 CALCULATION OF THE TR
ACER B
RE
AKTHROUGH C
URVES . . . . . . . . . . . . . . 313
6.6 EXPERIMENTAL AND NUMERICAL CONFIRMATION . . . . . . . . . . . . . .
. . . 315
6.7 TR
ACER D
ISTRIBUTION IN A T
WO-DIMENSIONAL AND THRE
E
DIMENSIONAL FLOW SYSTEM . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 315
6.8 APPLICATION OF M
ULTI-SHELL MODEL T
O INVESTIGATE THE
ANISOTROPIC NATURE . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 319
6.9 PR´E
CIS OF THE DEVELOPMENT OF THE MULTI-SHELL MODEL . . . . . . . . . 3
20
7T
HE SENSITIVITY C
OEFFI
CIENT APPROACH
. . . . . . . . . . . . . . . . . . . . . . . . . 323
7.1 GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 3
23
7.1.1 GOV
ERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 3
23
7.1.2 GOV
ERNING SENSITIVITY EQUATION . . . . . . . . . . . . . . . . . . . . . 3
24
7.2 CALCULATION OF THE PARAMETER DERIVATIVE
YY
U
/
YY
K
. . . . . . . . . . . . . . 324
7.2.1 INFLUENCE COEFFICIENT METHOD . . . . . . . . . . . . . . . . . . .
. . . . . 3
25
7.2.2 SENSITIVITY EQUATION METHOD . . . . . . . . . . . . . . . . . . .
. . . . . 3
25
7.2.3 ADJOINT-STATE METHOD . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 325
7.3 PERFORMANCE OF THE SENSITIVITY COEFFICIENT A
PPROACH . . . . . . . . . 328
7.3.1 NUMERICAL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . .
. . . . 3
28
7.3.2 APPLICATION OF ANALYTICAL S
OLUTIONS . . . . . . . . . . . . . . . . . . 3
32
7.4 ANALYSIS OF SENSITIVITY COEFFICIENT D
ISTRIBUTIONS . . . . . . . . . . . . . 3
33
7.4.1 SOME GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . .
. . . . 3
33
7.4.2 SENSITIVITY WITH RESPECT TO HYDRAULIC CONDUCTIVITY . . . 334
7.4.3 SENSITIVITY WITH RESPECT TO STORAGE . . . . . . . . . . . . . . .
. . . . 338
CONTENTS
XIII
7.4.4 SENSITIVITY DISTRIBUTION FOR DIFF
ERENT HYDRAULIC TE
ST
CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 3
39
7.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 3
43
8D
IFFUSIVITY M
EASUREMENTS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
347
8.1 CONCEPT OF THE DIFF
USIVITY APPROACH . . . . . . . . . . . . . . . . . . . . . . . 347
8.2 INVERSION APPROACH . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 349
8.3 APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 351
8.4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 3
56
9A
NALYSIS OF THE INFLUENCE OF BOUNDARIES
. . . . . . . . . . . . . . . . . . . . . . . 357
9.1 QUALITATIVE ANALYSIS OF THE BOUNDARY I
NFLUENCE . . . . . . . . . . . . . 358
9.1.1 MODEL S
ET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 3
58
9.1.2 ANALYSIS OF THE BREAKTHRO
UGH CURVES . . . . . . . . . . . . . . . . 359
9.1.3 ANALYSIS OF CHARACTERISTIC PARAMETERS . . . . . . . . . . . . . .
. . 3
63
9.2 NORMALIZATION OF TRACER-BREAKTHROUGH C
URVES . . . . . . . . . . . . . . 365
9.2.1 DEVELOPMENT OF THE NORMALIZATION CONCEPT . . . . . . . . . . 3
65
9.2.2 APPLICATION TO HETERO
GENEOUS DOMAINS . . . . . . . . . . . . . . 369
9.3 SUMMARY A
ND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 3
74
10 A MULTIVARIATE STATISTICAL A
PPROACH
. . . . . . . . . . . . . . . . . . . . . . . . . . . 375
10.1 A MULTIVARIATE S
TATISTICAL A
PPROACH FOR EVALUATING
EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 376
10.1.1 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 377
10.1.2 DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 3
77
10.1.3 DEFINITION OF V
ARIABLES CHARACTERIZING FLOW AND
TR
ANSPORT PROCESSES. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 3
79
10.1.4 REDUCING THE MULTIDIMENSIONAL VA
RIABLE S
PACE . . . . . . . 380
10.1.5 PROCESSING OF DATA . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 382
10.1.6 CLASSIFICATION OF T
HE F
LOW AND TR
ANSPORT DATA BY
USING K-MEANS CLUSTER ANALYSIS . . . . . . . . . . . . . . . . . . . . .
385
10.1.7 RESULTS AND INTERPRETATION . . . . . . . . . . . . . . . . . . .
. . . . . . . . 385
10.1.8 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . 3
87
10.2 DETERMINATION OF DOMAIN PRO
PERTIES AND VERIFICATION
OF THE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 389
10.2.1 DETERMINATION OF PERMEABILITIES . . . . . . . . . . . . . . . . .
. . . . 389
10.2.2 SET-UP O
F THE NUMERICAL MODEL . . . . . . . . . . . . . . . . . . . . . . 3
94
10.2.3 DISCUSSION OF THE RESULTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 396
10.2.4 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 400
10.3 CLUSTER ANALYSIS TO SET UP A CONCEPTUAL
MULTI-CONTINUUM MODEL . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 4
00
10.3.1 THE DISCRE
TE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 4
01
10.3.2 MULTI-CONTINUUM MODEL . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 4
07
10.3.3 COMPARISON OF
CLASSICAL
AND
NEW
APPROACH . . . . . . . . . . 413
XIVC
ONTENTS
10.3.4 UPSCALING OF THE MULTI-CONTINUUM MODEL . . . . . . . . . . . . 4
15
10.3.5 CONCLUSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 419
REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 421
NOMENCLATURE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 443 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV020837607 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.4.P67 |
callnumber-search | QC173.4.P67 |
callnumber-sort | QC 3173.4 P67 |
callnumber-subject | QC - Physics |
ctrlnum | (OCoLC)59615548 (DE-599)BVBBV020837607 |
dewey-full | 620.1/16 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/16 |
dewey-search | 620.1/16 |
dewey-sort | 3620.1 216 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Geologie / Paläontologie |
discipline_str_mv | Geologie / Paläontologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01899nam a2200493 c 4500</leader><controlfield tag="001">BV020837607</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060904 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051019s2005 gw abd| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">972138781</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540232702</subfield><subfield code="9">3-540-23270-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)59615548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020837607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.4.P67</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/16</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">550</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow and transport in fractured porous media</subfield><subfield code="b">with 65 tables</subfield><subfield code="c">P. Dietrich ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 447 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 421 - 442</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous materials</subfield><subfield code="v">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous materials</subfield><subfield code="x">Fluid dynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundwasserleiter</subfield><subfield code="0">(DE-588)4022375-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klüftung</subfield><subfield code="0">(DE-588)4198409-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundwasserstrom</subfield><subfield code="0">(DE-588)4121396-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grundwasserleiter</subfield><subfield code="0">(DE-588)4022375-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klüftung</subfield><subfield code="0">(DE-588)4198409-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Grundwasserstrom</subfield><subfield code="0">(DE-588)4121396-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dietrich, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014159526&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014159526</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV020837607 |
illustrated | Illustrated |
index_date | 2024-07-02T13:15:24Z |
indexdate | 2024-07-09T20:26:17Z |
institution | BVB |
isbn | 3540232702 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014159526 |
oclc_num | 59615548 |
open_access_boolean | |
owner | DE-12 DE-634 |
owner_facet | DE-12 DE-634 |
physical | XVIII, 447 S. Ill., graph. Darst., Kt. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
spelling | Flow and transport in fractured porous media with 65 tables P. Dietrich ... (eds.) Berlin [u.a.] Springer 2005 XVIII, 447 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 421 - 442 Mathematisches Modell Porous materials Mathematical models Porous materials Fluid dynamics Grundwasserleiter (DE-588)4022375-9 gnd rswk-swf Stoffübertragung (DE-588)4057696-6 gnd rswk-swf Klüftung (DE-588)4198409-2 gnd rswk-swf Grundwasserstrom (DE-588)4121396-8 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Grundwasserleiter (DE-588)4022375-9 s Klüftung (DE-588)4198409-2 s Grundwasserstrom (DE-588)4121396-8 s Stoffübertragung (DE-588)4057696-6 s DE-604 Dietrich, Peter Sonstige oth DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014159526&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Flow and transport in fractured porous media with 65 tables Mathematisches Modell Porous materials Mathematical models Porous materials Fluid dynamics Grundwasserleiter (DE-588)4022375-9 gnd Stoffübertragung (DE-588)4057696-6 gnd Klüftung (DE-588)4198409-2 gnd Grundwasserstrom (DE-588)4121396-8 gnd |
subject_GND | (DE-588)4022375-9 (DE-588)4057696-6 (DE-588)4198409-2 (DE-588)4121396-8 (DE-588)4143413-4 |
title | Flow and transport in fractured porous media with 65 tables |
title_auth | Flow and transport in fractured porous media with 65 tables |
title_exact_search | Flow and transport in fractured porous media with 65 tables |
title_exact_search_txtP | Flow and transport in fractured porous media with 65 tables |
title_full | Flow and transport in fractured porous media with 65 tables P. Dietrich ... (eds.) |
title_fullStr | Flow and transport in fractured porous media with 65 tables P. Dietrich ... (eds.) |
title_full_unstemmed | Flow and transport in fractured porous media with 65 tables P. Dietrich ... (eds.) |
title_short | Flow and transport in fractured porous media |
title_sort | flow and transport in fractured porous media with 65 tables |
title_sub | with 65 tables |
topic | Mathematisches Modell Porous materials Mathematical models Porous materials Fluid dynamics Grundwasserleiter (DE-588)4022375-9 gnd Stoffübertragung (DE-588)4057696-6 gnd Klüftung (DE-588)4198409-2 gnd Grundwasserstrom (DE-588)4121396-8 gnd |
topic_facet | Mathematisches Modell Porous materials Mathematical models Porous materials Fluid dynamics Grundwasserleiter Stoffübertragung Klüftung Grundwasserstrom Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014159526&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dietrichpeter flowandtransportinfracturedporousmediawith65tables |