Representation theory: a first course
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2004
|
Ausgabe: | Springer study ed. |
Schriftenreihe: | Graduate texts in mathematics
129 : Readings in mathematics |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 551 S. graph. Darst. |
ISBN: | 0387974954 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV020831955 | ||
003 | DE-604 | ||
005 | 20150410 | ||
007 | t | ||
008 | 051014s2004 d||| |||| 00||| eng d | ||
020 | |a 0387974954 |9 0-387-97495-4 | ||
035 | |a (OCoLC)254573793 | ||
035 | |a (DE-599)BVBBV020831955 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-703 |a DE-91G |a DE-188 |a DE-20 |a DE-29T | ||
082 | 0 | |a 512/.2 | |
082 | 0 | |a 512/.55 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 173f |2 stub | ||
084 | |a MAT 202f |2 stub | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Fulton, William |d 1939- |e Verfasser |0 (DE-588)136272541 |4 aut | |
245 | 1 | 0 | |a Representation theory |b a first course |c William Fulton ; Joe Harris |
250 | |a Springer study ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2004 | |
300 | |a XV, 551 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 129 : Readings in mathematics | |
490 | 0 | |a Undergraduate texts in mathematics : Readings in mathematics | |
650 | 4 | |a Lie-Algebra - Darstellungstheorie | |
650 | 4 | |a Lie-Gruppe - Darstellungstheorie | |
650 | 0 | 7 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 1 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 2 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 3 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
689 | 4 | 0 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 4 | |8 3\p |5 DE-604 | |
700 | 1 | |a Harris, Joe |d 1951- |e Verfasser |0 (DE-588)112574718 |4 aut | |
830 | 0 | |a Graduate texts in mathematics |v 129 : Readings in mathematics |w (DE-604)BV000000067 |9 129 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013837146&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013837146 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804134163935133696 |
---|---|
adam_text | Titel: Representation theory
Autor: Fulton, William
Jahr: 2004
Contents
Preface v
Using This Book ix
Part I: Finite Groups 1
1. Representations of Finite Groups 3
§1.1: Definitions 3
§1.2: Complete Reducibility; Schur s Lemma 5
§1.3: Examples: Abelian Groups; 8
2. Characters 12
§2.1: Characters 12
§2.2: The First Projection Formula and Its Consequences 15
§2.3: Examples: S4 and 2I4 18
§2.4: More Projection Formulas; More Consequences 21
3. Examples; Induced Representations; Group Algebras; Real
Representations 26
§3.1: Examples: S5 and 9I5 26
§3.2: Exterior Powers of the Standard Representation of Bd 31
§3.3: Induced Representations 32
§3.4: The Group Algebra 36
§3.5: Real Representations and Representations over Subfields of C 39
4. Representations of S„: Young Diagrams and Frobenius s
Character Formula
§4.1: Statements of the Results
§4.2: Irreducible Representations of
§4.3: Proof of Frobenius s Formula
5. Representations of and GL2(F9)
§5.1: Representations of
§5.2: Representations of GL2(F,) and SL2(F,)
6. WeyFs Construction
§6.1: Schur Functors and Their Characters
§6.2: The Proofs
Part IX: Lie Groups and Lie Algebras
7. Lie Groups
§7.1: Lie Groups: Definitions
§7.2: Examples of Lie Groups
§7.3: Two Constructions
8. Lie Algebras and Lie Groups
§8.1: Lie Algebras: Motivation and Definition
§8.2: Examples of Lie Algebras
§8.3: The Exponential Map
9. Initial Classification of Lie Algebras
§9.1: Rough Classification of Lie Algebras
§9.2: Engel s Theorem and Lie s Theorem
§9.3: Semisimple Lie Algebras
§9.4: Simple Lie Algebras
10. Lie Algebras in Dimensions One, Two, and Three
§10.1: Dimensions One and Two
§10.2: Dimension Three, Rank 1
§10.3: Dimension Three, Rank 2
§10.4: Dimension Three, Rank 3
11. Representations of sI2C
§11.1: The Irreducible Representations
§11.2: A Little Plethysm
§11.3: A Little Geometric Plethysm
Contents
xiii
12. Representations of sl3C, Part I 161
13. Representations of sI3C, Part II: Mainly Lots of Examples 175
§13.1: Examples 175
§13.2: Description of the Irreducible Representations 182
§13.3: A Little More Plethysm 185
§13.4: A Little More Geometric Plethysm 189
Part III: The Classical Lie Algebras and Their Representations 195
14. The General Set-up: Analyzing the Structure and Representations
of an Arbitrary Semisimple Lie Algebra 197
§14.1: Analyzing Simple Lie Algebras in General 197
§14.2: About the Killing Form 206
15. sl4C and sl„C 211
§15.1: Analyzing 211
§15.2: Representations of sI4C and sI„C 217
§15.3: Weyl s Construction and Tensor Products 222
§15.4: Some More Geometry 227
§15.5: Representations of GL„C 231
16. Symplectic Lie Algebras 238
§16.1: The Structure of Sp2„C and sp2llC 238
§16.2: Representations of sp4C 244
17. sp6C and sp2„C 253
§17.1: Representations of sp6C 253
§17.2: Representations of sp2-C in General 259
§17.3: Weyl s Construction for Symplectic Groups 262
18. Orthogonal Lie Algebras 267
§18.1: SOMC and somC 267
§18.2: Representations of so3C, so4C, and so5C 273
19. so6C, so7C, and sowC 282
§19.1: Representations of so6C 282
§19.2: Representations of the Even Orthogonal Algebras 286
§19.3: Representations of ao7C 292
§19.4: Representations of the Odd Orthogonal Algebras 294
§19.5: Weyl s Construction for Orthogonal Groups 296
xiv
Contents
299
20. Spin Representations of somC
§20.1: Clifford Algebras and Spin Representations of eo„C 299
§20.2: The Spin Groups SpinMC and SpinmR 30
§20.3: Spin8C and Triality
312
Part IV: Lie Theory 317
21. The Classification of Complex Simple Lie Algebras 319
§21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras 319
§21.2: Classifying Dynkin Diagrams f 325
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram 330
22. g2 and Other Exceptional Lie Algebras 339
§22.1: Construction of g2 from Its Dynkin Diagram 339
§22.2: Verifying That g2 is a Lie Algebra ,, 346
§22.3: Representations of q2 350
§22.4: Algebraic Constructions of the Exceptional Lie Algebras 359
23. Complex Lie Groups; Characters 366
§23.1: Representations of Complex Simple Groups 366
§23.2: Representation Rings and Characters 375
§23.3: Homogeneous Spaces 382
§23.4: Bruhat Decompositions . 395
24. Weyl Character Formula 399
§24.1: The Weyl Character Formula 399
§24.2: Applications to Classical Lie Algebras and Groups 403
25. More Character Formulas 415
§25.1: Freudenthars Multiplicity Formula 415
§25.2: Proof of (WCF); the Kostant Multiplicity Formula 419
§25.3: Tensor Products and Restrictions to Subgroups 424
26. Real Lie Algebras and Lie Groups 430
§26.1: Classification of Real Simple Lie Algebras and Groups 430
§26.2: Second Proof of Weyl s Character Formula 440
§26.3. Real, Complex, and Quaternionic Representations 444
Appendices 451
A. On Symmetric Functions 453
§A.l: Basic Symmetric Polynomials and Relations among Them 453
§A.2. Proofs of the Determinantal Identities 462
§A.3: Other Determinantal Identities 465
Contents xv
B. On Multilinear Algebra 471
§B.l: Tensor Products 471
§B.2: Exterior and Symmetric Powers 472
§B.3: Duals and Contractions 475
C. On Semisimplicity 478
§0.1: The Killing Form and Cartan s Criterion 478
§C.2: Complete Reducibility and the Jordan Decomposition 481
§C.3: On Derivations 483
D. Cartan Subalgebras 487
§D.l: The Existence of Cartan Subalgebras 487
§D.2: On the Structure of Semisimple Lie Algebras 489
§D.3: The Conjugacy of Cartan Subalgebras 491
§D.4: On the Weyl Group 493
E. Ado s and Levi s Theorems 499
§E.l: Levi s Theorem 499
§E.2: Ado s Theorem 500
F. Invariant Theory for the Classical Groups 504
§F.l: The Polynomial Invariants 504
§F.2: Applications to Symplectic and Orthogonal Groups 511
§F.3: Proof of Capelli s Identity 514
Hints, Answers, and References 516
Bibliography 536
Index of Symbols 543
Index 547
|
any_adam_object | 1 |
author | Fulton, William 1939- Harris, Joe 1951- |
author_GND | (DE-588)136272541 (DE-588)112574718 |
author_facet | Fulton, William 1939- Harris, Joe 1951- |
author_role | aut aut |
author_sort | Fulton, William 1939- |
author_variant | w f wf j h jh |
building | Verbundindex |
bvnumber | BV020831955 |
classification_rvk | SK 180 SK 260 |
classification_tum | MAT 173f MAT 202f MAT 225f |
ctrlnum | (OCoLC)254573793 (DE-599)BVBBV020831955 |
dewey-full | 512/.2 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 512/.55 |
dewey-search | 512/.2 512/.55 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Springer study ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02942nam a2200697 cb4500</leader><controlfield tag="001">BV020831955</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150410 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051014s2004 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387974954</subfield><subfield code="9">0-387-97495-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254573793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020831955</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fulton, William</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136272541</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation theory</subfield><subfield code="b">a first course</subfield><subfield code="c">William Fulton ; Joe Harris</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Springer study ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 551 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">129 : Readings in mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics : Readings in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie-Algebra - Darstellungstheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie-Gruppe - Darstellungstheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harris, Joe</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112574718</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">129 : Readings in mathematics</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">129</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013837146&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013837146</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV020831955 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:20:15Z |
institution | BVB |
isbn | 0387974954 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013837146 |
oclc_num | 254573793 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-91G DE-BY-TUM DE-188 DE-20 DE-29T |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-91G DE-BY-TUM DE-188 DE-20 DE-29T |
physical | XV, 551 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics Undergraduate texts in mathematics : Readings in mathematics |
spelling | Fulton, William 1939- Verfasser (DE-588)136272541 aut Representation theory a first course William Fulton ; Joe Harris Springer study ed. New York [u.a.] Springer 2004 XV, 551 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 129 : Readings in mathematics Undergraduate texts in mathematics : Readings in mathematics Lie-Algebra - Darstellungstheorie Lie-Gruppe - Darstellungstheorie Gruppe Mathematik (DE-588)4022379-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 s Lie-Algebra (DE-588)4130355-6 s DE-604 Lie-Gruppe (DE-588)4035695-4 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 2\p DE-604 Gruppe Mathematik (DE-588)4022379-6 s 3\p DE-604 Harris, Joe 1951- Verfasser (DE-588)112574718 aut Graduate texts in mathematics 129 : Readings in mathematics (DE-604)BV000000067 129 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013837146&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fulton, William 1939- Harris, Joe 1951- Representation theory a first course Graduate texts in mathematics Lie-Algebra - Darstellungstheorie Lie-Gruppe - Darstellungstheorie Gruppe Mathematik (DE-588)4022379-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4022379-6 (DE-588)4148816-7 (DE-588)4128289-9 (DE-588)4130355-6 (DE-588)4035695-4 |
title | Representation theory a first course |
title_auth | Representation theory a first course |
title_exact_search | Representation theory a first course |
title_full | Representation theory a first course William Fulton ; Joe Harris |
title_fullStr | Representation theory a first course William Fulton ; Joe Harris |
title_full_unstemmed | Representation theory a first course William Fulton ; Joe Harris |
title_short | Representation theory |
title_sort | representation theory a first course |
title_sub | a first course |
topic | Lie-Algebra - Darstellungstheorie Lie-Gruppe - Darstellungstheorie Gruppe Mathematik (DE-588)4022379-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Lie-Algebra - Darstellungstheorie Lie-Gruppe - Darstellungstheorie Gruppe Mathematik Darstellungstheorie Darstellung Mathematik Lie-Algebra Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013837146&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT fultonwilliam representationtheoryafirstcourse AT harrisjoe representationtheoryafirstcourse |