Affine invariant adaptive Newton codes for discretized PDEs:
Abstract: "The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
2002
|
Schriftenreihe: | ZIB-Report / Konrad-Zuse-Zentrum für Informationstechnik Berlin
2002,33 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs." |
Beschreibung: | 27 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV020004002 | ||
003 | DE-604 | ||
005 | 20060302 | ||
007 | t | ||
008 | 050822s2002 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)52753574 | ||
035 | |a (DE-599)BVBBV020004002 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-188 | ||
100 | 1 | |a Deuflhard, Peter |d 1944-2019 |e Verfasser |0 (DE-588)108205983 |4 aut | |
245 | 1 | 0 | |a Affine invariant adaptive Newton codes for discretized PDEs |c Peter Deuflhard ; Ulrich Nowak ; Martin Weiser |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 2002 | |
300 | |a 27 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a ZIB-Report / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 2002,33 | |
520 | 3 | |a Abstract: "The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs." | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Newton-Raphson methods | |
700 | 1 | |a Nowak, Ulrich |e Verfasser |4 aut | |
700 | 1 | |a Weiser, Martin |d 1970- |e Verfasser |0 (DE-588)123252040 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t ZIB-Report |v 2002,33 |w (DE-604)BV013191727 |9 2002,33 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-013325681 |
Datensatz im Suchindex
_version_ | 1804133556500299776 |
---|---|
any_adam_object | |
author | Deuflhard, Peter 1944-2019 Nowak, Ulrich Weiser, Martin 1970- |
author_GND | (DE-588)108205983 (DE-588)123252040 |
author_facet | Deuflhard, Peter 1944-2019 Nowak, Ulrich Weiser, Martin 1970- |
author_role | aut aut aut |
author_sort | Deuflhard, Peter 1944-2019 |
author_variant | p d pd u n un m w mw |
building | Verbundindex |
bvnumber | BV020004002 |
ctrlnum | (OCoLC)52753574 (DE-599)BVBBV020004002 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02135nam a2200325 cb4500</leader><controlfield tag="001">BV020004002</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050822s2002 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52753574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020004002</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="d">1944-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108205983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine invariant adaptive Newton codes for discretized PDEs</subfield><subfield code="c">Peter Deuflhard ; Ulrich Nowak ; Martin Weiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">27 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ZIB-Report / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">2002,33</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton-Raphson methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nowak, Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiser, Martin</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123252040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">ZIB-Report</subfield><subfield code="v">2002,33</subfield><subfield code="w">(DE-604)BV013191727</subfield><subfield code="9">2002,33</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013325681</subfield></datafield></record></collection> |
id | DE-604.BV020004002 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:10:36Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013325681 |
oclc_num | 52753574 |
open_access_boolean | |
owner | DE-703 DE-188 |
owner_facet | DE-703 DE-188 |
physical | 27 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | ZIB-Report / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Deuflhard, Peter 1944-2019 Verfasser (DE-588)108205983 aut Affine invariant adaptive Newton codes for discretized PDEs Peter Deuflhard ; Ulrich Nowak ; Martin Weiser Berlin Konrad-Zuse-Zentrum für Informationstechnik 2002 27 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier ZIB-Report / Konrad-Zuse-Zentrum für Informationstechnik Berlin 2002,33 Abstract: "The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs." Differential equations, Nonlinear Newton-Raphson methods Nowak, Ulrich Verfasser aut Weiser, Martin 1970- Verfasser (DE-588)123252040 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin ZIB-Report 2002,33 (DE-604)BV013191727 2002,33 |
spellingShingle | Deuflhard, Peter 1944-2019 Nowak, Ulrich Weiser, Martin 1970- Affine invariant adaptive Newton codes for discretized PDEs Differential equations, Nonlinear Newton-Raphson methods |
title | Affine invariant adaptive Newton codes for discretized PDEs |
title_auth | Affine invariant adaptive Newton codes for discretized PDEs |
title_exact_search | Affine invariant adaptive Newton codes for discretized PDEs |
title_full | Affine invariant adaptive Newton codes for discretized PDEs Peter Deuflhard ; Ulrich Nowak ; Martin Weiser |
title_fullStr | Affine invariant adaptive Newton codes for discretized PDEs Peter Deuflhard ; Ulrich Nowak ; Martin Weiser |
title_full_unstemmed | Affine invariant adaptive Newton codes for discretized PDEs Peter Deuflhard ; Ulrich Nowak ; Martin Weiser |
title_short | Affine invariant adaptive Newton codes for discretized PDEs |
title_sort | affine invariant adaptive newton codes for discretized pdes |
topic | Differential equations, Nonlinear Newton-Raphson methods |
topic_facet | Differential equations, Nonlinear Newton-Raphson methods |
volume_link | (DE-604)BV013191727 |
work_keys_str_mv | AT deuflhardpeter affineinvariantadaptivenewtoncodesfordiscretizedpdes AT nowakulrich affineinvariantadaptivenewtoncodesfordiscretizedpdes AT weisermartin affineinvariantadaptivenewtoncodesfordiscretizedpdes |