Introduction to modular forms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Ausgabe: | 3. print. |
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
222 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | IX, 261 S. |
ISBN: | 3540078339 0387078339 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV020003266 | ||
003 | DE-604 | ||
005 | 20130725 | ||
007 | t | ||
008 | 050819s2001 gw |||| 00||| ger d | ||
020 | |a 3540078339 |9 3-540-07833-9 | ||
020 | |a 0387078339 |9 0-387-07833-9 | ||
035 | |a (OCoLC)265455331 | ||
035 | |a (DE-599)BVBBV020003266 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-11 | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Introduction to modular forms |c Serge Lang |
250 | |a 3. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a IX, 261 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 222 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automorphe Form |0 (DE-588)4003972-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 1 | 1 | |a Automorphe Form |0 (DE-588)4003972-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 222 |w (DE-604)BV000000395 |9 222 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013324952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013324952 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804133555370983424 |
---|---|
adam_text | SERGE LANG INTRODUCTION TO MODULAR FORMS WITH 9 FIGURES SPRINGER TABLE
OF CONTENTS PART I. CLASSICAL THEORY CHAPTER I. MODULAR FORMS 3 § 1. THE
MODULAR GROUP 3 § 2. MODULAR FORMS 5 §3. THE MODULAR FUNCTIONY 12 § 4.
ESTIMATES FOR CUSP FORMS 12 § 5. THE MEILIN TRANSFORM 14 CHAPTER II.
HECKE OPERATORS 16 § 1. DEFINITIONS AND BASIC RELATIONS 16 § 2. EULER
PRODUCTS 21 CHAPTER III. PETERSSON SCALAR PRODUCT 24 § 1. THE RIEMANN
SURFACE T §* 24 § 2. CONGRUENCE SUBGROUPS 29 § 3. DIFFERENTIAL FORMS AND
MODULAR FORMS 32 §4. THE PETERSSON SCALAR PRODUCT 35 APPENDIX BY D.
ZAGIER. THE EICHLER-SELBERG TRACE FORMULA ON SL 2 (Z) . . 44 PART II.
PERIODS OF CUSP FORMS CHAPTER IV. MODULAR SYMBOLS 57 § 1. BASIC
PROPERTIES 57 §2. THE MANIN-DRINFELD THEOREM 61 § 3. HECKE OPERATORS AND
DISTRIBUTIONS 65 CHAPTER V. COEFFICIENTS AND PERIODS OF CUSP FORMS ON 5L
2 (Z) 68 § 1. THE PERIODS AND THEIR INTEGRAL RELATIONS 69 § 2. THE MANIN
RELATIONS 73 VLLL TABLE OF CONTENTS §3. ACTION OFTHE HECKE OPERATORS
ONTHE PERIODS 76 § 4. THE HOMOGENEITY THEOREM 81 CHAPTER VI. THE
EICHLER-SHIMURA ISOMORPHISM ON SL 2 (Z) 84 § 1. THE POLYNOMIAL
REPRESENTATION 85 § 2. THE SHIMURA PRODUCT ON DIFFERENTIAL FORMS 88 §3.
THE IMAGE OFTHE PERIOD MAPPING 89 § 4. COMPUTATION OF DIMENSIONS 93 § 5.
THE MAP INTO COHOMOLOGY 96 PART III. MODULAR FORMS FOR CONGRUENCE
SUBGROUPS CHAPTER VII. HIGHER LEVELS. 101 § 1. THE MODULAR SET AND
MODULAR FORMS 101 § 2. HECKE OPERATORS 105 § 3. HECKE OPERATORS ON § 4.
THE MATRIX OPERATION 111 §5. PETERSSON PRODUCT 112 §6. THE INVOLUTION
114 CHAPTER VIII. ATKIN-LEHNER THEORY 118 §1. CHANGING LEVELS 118 §2.
CHARACTERIZATION OF PRIMITIVE FORMS 122 § 3. THE STRUCTURE THEOREM 123
§4. PROOF OFTHE MAIN THEOREM 126 CHAPTER IX. THE DEDEKIND FORMALISM 138
§ 1. THE TRANSFORMATION FORMALISM 138 §2. EVALUATION OF THE DEDEKIND
SYMBOL 142 PART IV. CONGRUENCE PROPERTIES AND GALOIS REPRESENTATIONS
CHAPTER X. CONGRUENCES AND REDUCTIORI MOD P 151 §1. KUMMER CONGRUENCES
151 §2. VON STAUDT CONGRUENCES 153 § 3. ^-EXPANSIONS 154 § 4. MODULAR
FORMS OVER Z[, |] 156 §5. DERIVATIVES OF MODULAR FORMS 159 §6.
REDUCTIONMODP 162 §7. MODULAR FORMS MOD P,P 5 164 §8. THE OPERATION
OFOEONM 169 TABLEOF CONTENTS IX CHAPTER XI. GALOIS REPRESENTATIONS 176 §
1. SIMPLICITY 177 §2. SUBGROUPSOFGL 2 180 §3. APPLICATIONS TO
CONGRUENCES OF THE TRACE OF FROBENIUS 187 APPENDIX BY WALTER FEIT.
EXCEPTIONAL SUBGROUPS OF GL 2 198 PART V. P-ADIC DISTRIBUTIONS CHAPTER
XII. GENERAL DISTRIBUTIONS 207 § 1. DEFINITIONS 207 § 2. AVERAGING
OPERATORS 210 § 3. THE IWASAWA ALGEBRA 217 § 4. WEIERSTRASS PREPARATION
THEOREM 219 § 5. MODULES OVER Z P [[7]] 221 CHAPTER XIII. BERNOULLI
NUMBERS AND POLYNOMIALS 228 § 1. BERNOULLI NUMBERS AND POLYNOMIALS 228 §
2. THE INTEGRAL DISTRIBUTION 233 § 3. L-FUNCTIONS AND BERNOULLI NUMBERS
236 CHAPTER XIV. THE COMPLEX L-FUNCTIONS 240 §1. THE HURWITZ ZETA
FUNCTION 240 § 2. FUNCTIONAL EQUATION 244 CHAPTER XV. THE
HECKE-EISENSTEIN AND KLEIN FORMS 247 §1. FORMS OFWEIGHT 1 247 § 2. THE
KLEIN FORMS 251 §3. FORMS OFWEIGHT 2 252 BIBLIOGRAPHY . . . 255 SUBJECT
INDEX 260
|
any_adam_object | 1 |
author | Lang, Serge 1927-2005 |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 |
author_role | aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV020003266 |
classification_rvk | SK 180 SK 750 |
ctrlnum | (OCoLC)265455331 (DE-599)BVBBV020003266 |
discipline | Mathematik |
edition | 3. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02090nam a2200517 cb4500</leader><controlfield tag="001">BV020003266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130725 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050819s2001 gw |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540078339</subfield><subfield code="9">3-540-07833-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387078339</subfield><subfield code="9">0-387-07833-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265455331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020003266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to modular forms</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 261 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">222</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">222</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">222</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013324952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013324952</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV020003266 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T20:10:35Z |
institution | BVB |
isbn | 3540078339 0387078339 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013324952 |
oclc_num | 265455331 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-11 |
physical | IX, 261 S. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Introduction to modular forms Serge Lang 3. print. Berlin [u.a.] Springer 2001 IX, 261 S. txt rdacontent n rdamedia nc rdacarrier Grundlehren der mathematischen Wissenschaften 222 Literaturangaben Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Modulform (DE-588)4128299-1 gnd rswk-swf Automorphe Form (DE-588)4003972-9 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Modulform (DE-588)4128299-1 s DE-604 Algebraische Zahlentheorie (DE-588)4001170-7 s Automorphe Form (DE-588)4003972-9 s 1\p DE-604 Funktionentheorie (DE-588)4018935-1 s 2\p DE-604 Grundlehren der mathematischen Wissenschaften 222 (DE-604)BV000000395 222 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013324952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Introduction to modular forms Grundlehren der mathematischen Wissenschaften Algebraische Zahlentheorie (DE-588)4001170-7 gnd Modulform (DE-588)4128299-1 gnd Automorphe Form (DE-588)4003972-9 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4128299-1 (DE-588)4003972-9 (DE-588)4018935-1 |
title | Introduction to modular forms |
title_auth | Introduction to modular forms |
title_exact_search | Introduction to modular forms |
title_full | Introduction to modular forms Serge Lang |
title_fullStr | Introduction to modular forms Serge Lang |
title_full_unstemmed | Introduction to modular forms Serge Lang |
title_short | Introduction to modular forms |
title_sort | introduction to modular forms |
topic | Algebraische Zahlentheorie (DE-588)4001170-7 gnd Modulform (DE-588)4128299-1 gnd Automorphe Form (DE-588)4003972-9 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Algebraische Zahlentheorie Modulform Automorphe Form Funktionentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013324952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT langserge introductiontomodularforms |