Analytical mechanics for relativity and quantum mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2005
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Oxford graduate texts
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 597 S. Ill., graph. Darst. |
ISBN: | 019856726X 9780198567264 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019991293 | ||
003 | DE-604 | ||
005 | 20060222 | ||
007 | t | ||
008 | 050805s2005 ad|| |||| 00||| eng d | ||
020 | |a 019856726X |9 0-19-856726-X | ||
020 | |a 9780198567264 |9 978-0-19-856726-4 | ||
035 | |a (OCoLC)60512562 | ||
035 | |a (DE-599)BVBBV019991293 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-91G |a DE-355 |a DE-11 |a DE-19 | ||
050 | 0 | |a QA808.5 | |
082 | 0 | |a 531.01515 |2 22 | |
084 | |a UF 1000 |0 (DE-625)145552: |2 rvk | ||
084 | |a PHY 041f |2 stub | ||
084 | |a PHY 020f |2 stub | ||
084 | |a PHY 200f |2 stub | ||
100 | 1 | |a Johns, Oliver Davis |e Verfasser |0 (DE-588)159029589 |4 aut | |
245 | 1 | 0 | |a Analytical mechanics for relativity and quantum mechanics |c Oliver Davis Johns |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2005 | |
300 | |a XX, 597 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Oxford graduate texts | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Mechanics, Analytic | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relativistische Mechanik |0 (DE-588)4177685-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |D s |
689 | 0 | 2 | |a Relativistische Mechanik |0 (DE-588)4177685-9 |D s |
689 | 0 | 3 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |D s |
689 | 1 | 1 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 1 | 2 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013313205&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013313205 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804133537726595072 |
---|---|
adam_text | ANALYTICAL MECHANICS FOR RELATIVITY AND QUANTUM MECHANICS OLIVER DAVIS
JOHNS SAN FRANCISCO STATE UNIVERSITY OXPORD UNIVERSITY PRESS CONTENTS
DEDICATION V PREFACE VII ACKNOWLEDGMENTS IX PART I INTRODUCTION: THE
TRADITIONAL THEORY 1 BASIC DYNAMICS OF POINT PARTICLES AND COLLECTIONS 3
1.1 NEWTON S SPACE AND TIME 3 1.2 SINGLE POINT PARTICLE 5 1.3 COLLECTIVE
VARIABLES 6 1.4 THE LAW OF MOMENTUM FOR COLLECTIONS 7 1.5 THE LAW OF
ANGULAR MOMENTUM FOR COLLECTIONS 8 1.6 DERIVATIONS OF THE AXIOMS 9 1.7
THE WORK-ENERGY THEOREM FOR COLLECTIONS 10 1.8 POTENTIAL AND TOTAL
ENERGY FOR COLLECTIONS 11 1.9 THE CENTER OF MASS 11 1.10 CENTER OF MASS
AND MOMENTUM 13 1.11 CENTER OF MASS AND ANGULAR MOMENTUM 14 1.12 CENTER
OF MASS AND TORQUE * 15 1.13 CHANGE OF ANGULAR MOMENTUM 15 1.14 CENTER
OF MASS AND THE WORK-ENERGY THEOREMS 16 1.15 CENTER OF MASS AS A POINT
PARTICLE 17 1.16 SPECIAL RESULTS FOR RIGID BODIES 17 1.17 EXERCISES 18 2
INTRODUCTION TO LAGRANGIAN MECHANICS 24 2.1 CONFIGURATION SPACE 24 2.2
NEWTON S SECOND LAW IN LAGRANGIAN FORM , 26 2.3 A SIMPLE EXAMPLE 27 2.4
ARBITRARY GENERALIZED COORDINATES 27 2.5 GENERALIZED VELOCITIES IN THE
Q-SYSTEM 29 2.6 GENERALIZED FORCES IN THE Q-SYSTEM 29 2.7 THE LAGRANGIAN
EXPRESSED IN THE Q-SYSTEM 30 2.8 TWO IMPORTANT IDENTITIES 31 2.9
INVARIANCE OF THE LAGRANGE EQUATIONS 32 2.10 RELATION BETWEEN ANY TWO
SYSTEMS 33 2.11 MORE OF THE SIMPLE EXAMPLE 34 2.12 GENERALIZED MOMENTA
IN THE Q-SYSTEM 35 2.13 IGNORABLE COORDINATES 35 2.14 SOME REMARKS ABOUT
UNITS 36 XI XII CONTENTS 2.15 THE GENERALIZED ENERGY FUNCTION 36 2.16
THE GENERALIZED ENERGY AND THE TOTAL ENERGY 37 2.17 VELOCITY DEPENDENT
POTENTIALS 38 2.18 EXERCISES 41 3 LAGRANGIAN THEORY OF CONSTRAINTS 46
3.1 CONSTRAINTS DEFINED 46 3.2 VIRTUAL DISPLACEMENT 47 3.3 VIRTUAL WORK
48 3.4 FORM OF THE FORCES OF CONSTRAINT 50 3.5 GENERAL LAGRANGE
EQUATIONS WITH CONSTRAINTS 52 3.6 AN ALTERNATE NOTATION FOR HOLONOMIC
CONSTRAINTS 53 3.7 EXAMPLE OF THE GENERAL METHOD 54 3.8 REDUCTION OF
DEGREES OF FREEDOM 54 3.9 EXAMPLE OF A REDUCTION 57 3.10 EXAMPLE OF A
SIMPLER REDUCTION METHOD 58 3.11 RECOVERY OF THE FORCES OF CONSTRAINT 59
3.12 EXAMPLE OF A RECOVERY 60 3.13 GENERALIZED ENERGY THEOREM WITH
CONSTRAINTS 61 3.14 TRACTABLE NON-HOLONOMIC CONSTRAINTS 63 3.15
EXERCISES 64 4 INTRODUCTION TO HAMILTONIAN MECHANICS 71 4.1 PHASE SPACE
71 4.2 HAMILTON EQUATIONS 74 4.3 AN EXAMPLE OF THE HAMILTON EQUATIONS 76
4.4 NON-POTENTIAL AND CONSTRAINT FORCES 77 4.5 REDUCED HAMILTONIAN 78
4.6 POISSON BRACKETS 80 4.7 THE SCHROEDINGER EQUATION 82 4.8 THE
EHRENFEST THEOREM 83 4.9 EXERCISES 84 5 THE CALCULUS OF VARIATIONS 88
5.1 PATHS IN AN A?-DIMENSIONAL SPACE 89 5.2 VARIATIONS OF COORDINATES
90 5.3 VARIATIONS OF FUNCTIONS . 91 5.4 VARIATION OF A LINE INTEGRAL 92
5.5 FINDING EXTREMUM PATHS 94 5.6 EXAMPLE OF AN EXTREMUM PATH
CALCULATION 95 5.7 INVARIANCE AND HOMOGENEITY 98 5.8 THE BRACHISTOCHRONE
PROBLEM 100 5.9 CALCULUS OF VARIATIONS WITH CONSTRAINTS 102 5.10 AN
EXAMPLE WITH CONSTRAINTS 105 5.11 REDUCTION OF DEGREES OF FREEDOM 106
5.12 EXAMPLE OF A REDUCTION 107 5.13 EXAMPLE OF A BETTER REDUCTION 108
5.14 THE COORDINATE PARAMETRIC METHOD 108 CONTENTS XIII 5.15 COMPARISON
OF THE METHODS 111 5.16 EXERCISES 113 6 HAMILTON S PRINCIPLE 117 6.1
HAMILTON S PRINCIPLE IN LAGRANGIAN FORM 117 6.2 HAMILTON S PRINCIPLE
WITH CONSTRAINTS 118 6.3 COMMENTS ON HAMILTON S PRINCIPLE 119 6.4
PHASE-SPACE HAMILTON S PRINCIPLE 120 6.5 EXERCISES 122 7 LINEAR
OPERATORS AND DYADICS 123 7.1 DEFINITION OF OPERATORS 123 7.2 OPERATORS
AND MATRICES 125 7.3 ADDITION AND MULTIPLICATION 127 7.4 DETERMINANT,
TRACE, AND INVERSE 127 7.5 SPECIAL OPERATORS 129 7.6 DYADICS 130 7.7
RESOLUTION OF UNITY 133 7.8 OPERATORS, COMPONENTS, MATRICES, AND DYADICS
133 7.9 COMPLEX VECTORS AND OPERATORS 134 7.10 REAL AND COMPLEX INNER
PRODUCTS 136 7.11 EIGENVECTORS AND EIGENVALUES 136 7.12 EIGENVECTORS OF
REAL SYMMETRIC OPERATOR 137 7.13 EIGENVECTORS OF REAL ANTI-SYMMETRIC
OPERATOR 137 7.14 NORMAL OPERATORS 139 7.15 DETERMINANT AND TRACE OF
NORMAL OPERATOR 141 7.16 EIGEN-DYADIC EXPANSION OF NORMAL OPERATOR * 142
7.17 FUNCTIONS OF NORMAL OPERATORS 143 7.18 THE EXPONENTIAL FUNCTION 145
7.19 THE DIRAC NOTATION 146 7.20 EXERCISES 147 8 KINEMATICS OF ROTATION
152 8.1 CHARACTERIZATION OF RIGID BODIES 152 8.2 THE CENTER OF MASS OF A
RIGID BODY 153 8.3 GENERAL DEFINITION OF ROTATION OPERATOR 155 8.4
ROTATION MATRICES 157 8.5 SOME PROPERTIES OF ROTATION OPERATORS 158 8.6
PROPER AND IMPROPER ROTATION OPERATORS 158 8.7 THE ROTATION GROUP 160
8.8 KINEMATICS OF A RIGID BODY 161 8.9 ROTATION OPERATORS AND RIGID
BODIES 163 8.10 DIFFERENTIATION OF A ROTATION OPERATOR 164 8.11 MEANING
OF THE ANGULAR VELOCITY VECTOR 166 8.12 VELOCITIES OF THE MASSES OF A
RIGID BODY 168 8.13 SAVIO S TR/EOREM 169 8.14 INFINITESIMAL ROTATION 170
8.15 ADDITION OF ANGULAR VELOCITIES 171 XIV CONTENTS 8.16 FUNDAMENTAL
GENERATORS OF ROTATIONS 172 8.17 ROTATION WITH A FIXED AXIS 174 8.18
EXPANSION OF FIXED-AXIS ROTATION 176 8.19 EIGENVECTORS OF THE FIXED-AXIS
ROTATION OPERATOR 178 8.20 THE EULER THEOREM 179 8.21 ROTATION OF
OPERATORS 181 8.22 ROTATION OF THE FUNDAMENTAL GENERATORS 181 8.23
ROTATION OF A FIXED-AXIS ROTATION 182 8.24 PARAMETERIZATION OF ROTATION
OPERATORS 183 8.25 DIFFERENTIATION OF PARAMETERIZED OPERATOR 184 8.26
EULER ANGLES 185 8.27 FIXED-AXIS ROTATION FROM EULER ANGLES 188 8.28
TIME DERIVATIVE OF A PRODUCT 189 8.29 ANGULAR VELOCITY FROM EULER ANGLES
190 8.30 ACTIVE AND PASSIVE ROTATIONS 191 8.31 PASSIVE TRANSFORMATION OF
VECTOR COMPONENTS 192 8.32 PASSIVE TRANSFORMATION OF MATRIX ELEMENTS 193
8.33 THE BODY DERIVATIVE 194 8.34 PASSIVE ROTATIONS AND RIGID BODIES 195
8.35 PASSIVE USE OF EULER ANGLES 196 8.36 EXERCISES 198 9 ROTATIONAL
DYNAMICS 202 9.1 BASIC FACTS OF RIGID-BODY MOTION 202 9.2 THE INERTIA
OPERATOR AND THE SPIN 203 9.3 THE INERTIA DYADIC . 204 9.4 KINETIC
ENERGY OF A RIGID BODY 205 9.5 MEANING OF THE INERTIA OPERATOR 205 9.6
PRINCIPAL AXES 206 9.7 GUESSING THE PRINCIPAL AXES 208 9.8 TIME
EVOLUTION OF THE SPIN 210 9.9 TORQUE-FREE MOTION OF A SYMMETRIC BODY 211
9.10 EULER ANGLES OF THE TORQUE-FREE MOTION 215 9.11 BODY WITH ONE POINT
FIXED 217 9.12 PRESERVING THE PRINCIPAL AXES * 220 9.13 TIME EVOLUTION
WITH ONE POINT FIXED 221 9.14 BODY WITH ONE POINT FIXED, ALTERNATE
DERIVATION 221 9.15 WORK-ENERGY THEOREMS 222 9.16 ROTATION WITH A FIXED
AXIS 223 9.17 THE SYMMETRIC TOP WITH ONE POINT FIXED 224 9.18 THE
INITIALLY CLAMPED SYMMETRIC TOP 229 9.19 APPROXIMATE TREATMENT OF THE
SYMMETRIC TOP 230 9.20 INERTIAL FORCES 231 9.21 LABORATORY ON THE
SURFACE OF THE EARTH 234 9.22 CORIOLIS FORCE CALCULATIONS 236 9.23 THE
MAGNETIC - CORIOLIS ANALOGY 237 9.24 EXERCISES 239 CONTENTS XV 10 SMALL
VIBRATIONS ABOUT EQUILIBRIUM 246 10.1 EQUILIBRIUM DEFINED 246 10.2
FINDING EQUILIBRIUM POINTS 247 10.3 SMALL COORDINATES 248 10.4 NORMAL
MODES 249 10.5 GENERALIZED EIGENVALUE PROBLEM 250 10.6 STABILITY 252
10.7 INITIAL CONDITIONS 252 10.8 THE ENERGY OF SMALL VIBRATIONS 253 10.9
SINGLE MODE EXCITATIONS 254 10.10 A SIMPLE EXAMPLE 255 10.11
ZERO-FREQUENCY MODES 260 10.12 EXERCISES 261 PART II MECHANICS WITH TIME
AS A COORDINATE 11 LAGRANGIAN MECHANICS WITH TIME AS A COORDINATE 267
11.1 TIME AS A COORDINATE 268 11.2 A CHANGE OF NOTATION 268 11.3
EXTENDED LAGRANGIAN 269 11.4 EXTENDED MOMENTA 270 11.5 EXTENDED LAGRANGE
EQUATIONS 272 11.6 A SIMPLE EXAMPLE 273 11.7 INVARIANCE-UNDER CHANGE OF
PARAMETER 275 11.8 CHANGE OF GENERALIZED COORDINATES 276 11.9 REDUNDANCY
OF THE EXTENDED LAGRANGE EQUATIONS 277 11.10 FORCES OF CONSTRAINT 278
11.11 REDUCED LAGRANGIANS WITH TIME AS A COORDINATE 281 11.12 EXERCISES
282 12 HAMILTONIAN MECHANICS WITH TIME AS A COORDINATE 285 12.1 EXTENDED
PHASE SPACE 285 12.2 DEPENDENCY RELATION 285 12.3 ONLY ONE DEPENDENCY
RELATION 286 12.4 FROM TRADITIONAL TO EXTENDED HAMILTONIAN MECHANICS 288
12.5 EQUIVALENCE TO TRADITIONAL HAMILTON EQUATIONS 290 12.6 EXAMPLE OF
EXTENDED HAMILTON EQUATIONS . 291 12.7 EQUIVALENT EXTENDED HAMILTONIANS
292 12.8 ALTERNATE HAMILTONIANS 293 12.9 ALTERNATE TRADITIONAL
HAMILTONIANS 295 12.10 NOT A LEGENDRE TRANSFORMATION 295 12.11 DIRAC S
THEORY OF PHASE-SPACE CONSTRAINTS 296 12.12 POISSON BRACKETS WITH TIME
AS A COORDINATE 298 12.13 POISSON BRACKETS AND QUANTUM COMMUTATORS 300
12.14 EXERCISES 302 13 HAMILTON S PRINCIPLE AND NOETHER S THEOREM 305
13.1 EXTENDED HAMILTON S PRINCIPLE 305 XVI CONTENTS 13.2 NOETHER S
THEOREM 307 13.3 EXAMPLES OF NOETHER S THEOREM 308 13.4 HAMILTON S
PRINCIPLE IN AN EXTENDED PHASE SPACE 310 13.5 EXERCISES 312 14
RELATIVITY AND SPACETIME 313 14.1 GALILEAN RELATIVITY 313 14.2 CONFLICT
WITH THE AETHER 315 14.3 EINSTEINIAN RELATIVITY 316 14.4 WHAT IS A
COORDINATE SYSTEM? 318 14.5 A SURVEY OF SPACETIME 319 14.6 THE LORENTZ
TRANSFORMATION 331 14.7 THE PRINCIPLE OF RELATIVITY 337 14.8 LORENTZIAN
RELATIVITY 339 14.9 MECHANISM AND RELATIVITY 340 14.10 EXERCISES 341 15
FOURVECTORS AND OPERATORS 343 15.1 FOURVECTORS 343 15.2 INNER PRODUCT
346 15.3 CHOICE OF METRIC 347 15.4 RELATIVISTIC INTERVAL 347 15.5
SPACETIME DIAGRAM 349 15.6 GENERAL FOURVECTORS 350 15.7 CONSTRUCTION OF
NEW FOURVECTORS 351 15.8 COVARIANT AND CONTRAVARIANT COMPONENTS 352 15.9
GENERAL LORENTZ TRANSFORMATIONS * 355 15.10 TRANSFORMATION OF COMPONENTS
356 15.11 EXAMPLES OF LORENTZ TRANSFORMATIONS 358 15.12 GRADIENT
FOURVECTOR 360 15.13 MANIFEST COVARIANCE 361 15.14 FORMAL COVARIANCE 362
15.15 THE LORENTZ GROUP 362 15.16 PROPER LORENTZ TRANSFORMATIONS AND THE
LITTLE GROUP 364 15.17 PARAMETERIZATION 364 15.18 FOURVECTOR OPERATORS
366 15.19 FOURVECTOR DYADICS - 367 15.20 WEDGE PRODUCTS 368 15.21
SCALAR, FOURVECTOR, AND OPERATOR FIELDS 369 15.22 MANIFESTLY COVARIANT
FORM OF MAXWELL S EQUATIONS 370 15.23 EXERCISES 373 16 RELATIVISTIC
MECHANICS 376 16.1 MODIFICATION OF NEWTON S LAWS 376 16.2 THE MOMENTUM
FOURVECTOR 378 16.3 FOURVECTOR FORM OF NEWTON S SECOND LAW 378 16.4
CONSERVATION OF FOURVECTOR MOMENTUM 380 16.5 PARTICLES OF ZERO MASS 380
CONTENTS XVII 16.6 TRADITIONAL LAGRANGIAN 381 16.7 TRADITIONAL
HAMILTONIAN 383 16.8 INVARIANT LAGRANGIAN 383 16.9 MANIFESTLY COVARIANT
LAGRANGE EQUATIONS 384 16.10 MOMENTUM FOURVECTORS AND CANONICAL MOMENTA
385 16.11 EXTENDED HAMILTONIAN 386 16.12 INVARIANT HAMILTONIAN 387 16.13
MANIFESTLY COVARIANT HAMILTON EQUATIONS 388 16.14 THE KLEIN-GORDON
EQUATION 389 16.15 THE DIRAC EQUATION 390 16.16 THE MANIFESTLY COVARIANT
IV-BODY PROBLEM 392 16.17 COVARIANT SERRET-FRENET THEORY 399 16.18
FERMI-WALKER TRANSPORT 401 16.19 EXAMPLE OF FERMI-WALKER TRANSPORT 403
16.20 EXERCISES 405 17 CANONICAL TRANSFORMATIONS 411 17.1 DEFINITION OF
CANONICAL TRANSFORMATIONS 411 17.2 EXAMPLE OF A CANONICAL TRANSFORMATION
412 17.3 SYMPLECTIC COORDINATES 412 17.4 SYMPLECTIC MATRIX 416 17.5
STANDARD EQUATIONS IN SYMPLECTIC FORM 417 17.6 POISSON BRACKET CONDITION
418 17.7 INVERSION OF CANONICAL TRANSFORMATIONS 419 17.8 DIRECT
CONDITION 420 17.9 LAGRANGE BRACKET CONDITION 422 17.10 THE CANONICAL
GROUP 423 17.11 FORM INVARIANCE OF POISSON BRACKETS 424 17.12 FORM
INVARIANCE OF THE HAMILTON EQUATIONS 426 17.13 TRADITIONAL CANONICAL
TRANSFORMATIONS 428 17.14 EXERCISES 430 18 GENERATING FUNCTIONS 434 18.1
PROTO-GENERATING FUNCTIONS 434 18.2 GENERATING FUNCTIONS OF THE FT TYPE
436 18.3 GENERATING FUNCTIONS OF THE F 2 TYPE 438 18.4 EXAMPLES OF
GENERATING FUNCTIONS 439 18.5 OTHER SIMPLE GENERATING FUNCTIONS 441 18.6
MIXED GENERATING FUNCTIONS 442 18.7 EXAMPLE OF A MIXED GENERATING
FUNCTION 444 18.8 FINDING SIMPLE GENERATING FUNCTIONS 445 18.9 FINDING
MIXED GENERATING FUNCTIONS 446 18.10 FINDING MIXED GENERATING
FUNCTIONS*AN EXAMPLE 448 18.11 TRADITIONAL GENERATING FUNCTIONS 449
18.12 STANDARD FORM OF EXTENDED HAMILTONIAN RECOVERED 451 18.13
DIFFERENTIAL CANONICAL TRANSFORMATIONS 452 18.14 ACTIVE CANONICAL
TRANSFORMATIONS 453 18.15 PHASE-SPACE ANALOG OF NOETHER THEOREM 454
XVIII CONTENTS 18.16 LIOUVILLE THEOREM 455 18.17 EXERCISES 456 19
HAMILTON-JACOBI THEORY 461 19.1 DEFINITION OF THE ACTION 461 19.2
MOMENTA FROM THE 5I ACTION FUNCTION 462 19.3 THE S2 ACTION FUNCTION 464
19.4 EXAMPLE OF S AND 52 ACTION FUNCTIONS 465 19.5 THE HAMILTON-JACOBI
EQUATION 466 19.6 HAMILTON S CHARACTERISTIC EQUATIONS 467 19.7 COMPLETE
INTEGRALS 469 19.8 SEPARATION OF VARIABLES 472 19.9 CANONICAL
TRANSFORMATIONS 473 19.10 GENERAL INTEGRALS 475 19.11 MONO-ENERGETIC
INTEGRALS 480 19.12 THE OPTICAL ANALOGY 482 19.13 THE RELATIVISTIC
HAMILTON-JACOBI EQUATION 483 19.14 SCHROEDINGER AND HAMILTON-JACOBI
EQUATIONS 483 19.15 THE QUANTUM CAUCHY PROBLEM 485 19.16 THE BOHM HIDDEN
VARIABLE MODEL 486 19.17 FEYNMAN PATH-INTEGRAL TECHNIQUE 487 19.18
QUANTUM AND CLASSICAL MECHANICS 488 19.19 EXERCISES 489 PART III
MATHEMATICAL APPENDICES A VECTOR FUNDAMENTALS 495 A.1 PROPERTIES OF
VECTORS 495 A.2 DOT PRODUCT 495 A.3 CROSS PRODUCT 496 A.4 LINEARITY
496 A.5 CARTESIAN BASIS 497 A.6 THE POSITION VECTOR 498 A.7 FIELDS 499
A.8 POLAR COORDINATES 499 A.9 THE ALGEBRA OF SUMS 502 A.10
MISCELLANEOUS VECTOR FORMULAE 502 A. 11 GRADIENT VECTOR OPERATOR ,504 A.
12 THE SERRET-FRENET FORMULAE 505 B MATRICES AND DETERMINANTS 508 B.I
DEFINITION OF MATRICES 508 B.2 TRANSPOSED MATRIX 508 B.3 COLUMN MATRICES
AND COLUMN VECTORS 509 B.4 SQUARE, SYMMETRIC, AND HERMITIAN MATRICES 509
B.5 ALGEBRA OF MATRICES: ADDITION 510 B.6 ALGEBRA OF MATRICES:
MULTIPLICATION 511 B.7 DIAGONAL AND UNIT MATRICES 512 CONTENTS XIX B.8
TRACE OF A SQUARE MATRIX 513 B.9 DIFFERENTIATION OF MATRICES 513 B.10
DETERMINANTS OF SQUARE MATRICES 513 B.LL PROPERTIES OF DETERMINANTS 514
B.12 COFACTORS 515 B.13 EXPANSION OF A DETERMINANT BY COFACTORS 515 B.14
INVERSES OF NONSINGULAR MATRICES 516 B.I5 PARTITIONED MATRICES 517 B.16
CRAMER S RULE 518 B.17 MINORS AND RANK 519 B.18 LINEAR INDEPENDENCE 520
B.19 HOMOGENEOUS LINEAR EQUATIONS 520 B.20 INNER PRODUCTS OF COLUMN
VECTORS 521 B.21 COMPLEX INNER PRODUCTS 523 B.22 ORTHOGONAL AND UNITARY
MATRICES 523 B.23 EIGENVALUES AND EIGENVECTORS OF MATRICES 524 B.24
EIGENVECTORS OF REAL SYMMETRIC MATRIX 525 B.25 EIGENVECTORS OF COMPLEX
HERMITIAN MATRIX 528 B.26 NORMAL MATRICES 528 B.27 PROPERTIES OF NORMAL
MATRICES 530 B.28 FUNCTIONS OF NORMAL MATRICES 533 C EIGENVALUE PROBLEM
WITH GENERAL METRIC 534 C.I POSITIVE-DEFINITE MATRICES 534 C.2
GENERALIZATION OF THE REAL INNER PRODUCT 535 C.3 THE GENERALIZED
EIGENVALUE PROBLEM 536 C.4 FINDING EIGENVECTORS IN THE GENERALIZED
PROBLEM 537 C.5 USES OF THE GENERALIZED EIGENVECTORS 538 D THE CALCULUS
OF MANY VARIABLES 540 D.I BASIC PROPERTIES OF FUNCTIONS 540 D.2 REGIONS
OF DEFINITION OF FUNCTIONS 540 D.3 CONTINUITY OF FUNCTIONS 541 D.4
COMPOUND FUNCTIONS 541 D.5 THE SAME FUNCTION IN DIFFERENT COORDINATES
541 D.6 PARTIAL DERIVATIVES 542 D.7 CONTINUOUSLY DIFFERENTIABLE
FUNCTIONS * 543 D.8 ORDER OF DIFFERENTIATION 543 D.9 CHAIN RULE 543 D.10
MEAN VALUES 544 D.LL ORDERS OF SMALLNESS 544 D.12 DIFFERENTIALS 545 D.13
DIFFERENTIAL OF A FUNCTION OF SEVERAL VARIABLES 545 D.14 DIFFERENTIALS
AND THE CHAIN RULE 546 D.15 DIFFERENTIALS OF^SECOND AND HIGHER ORDERS
546 D.I6 TAYLOR SERIES 547 D.I7 HIGHER-ORDER DIFFERENTIAL AS A
DIFFERENCE 548 D.18 DIFFERENTIAL EXPRESSIONS 548 XX CONTENTS D.19 LINE
INTEGRAL OF A DIFFERENTIAL EXPRESSION 550 D.20 PERFECT DIFFERENTIALS 550
D.21 PERFECT DIFFERENTIAL AND PATH INDEPENDENCE 552 D.22 JACOBIANS 553
D.23 GLOBAL INVERSE FUNCTION THEOREM 556 D.24 LOCAL INVERSE FUNCTION
THEOREM 559 D.25 DERIVATIVES OF THE INVERSE FUNCTIONS 560 D.26 IMPLICIT
FUNCTION THEOREM 561 D.27 DERIVATIVES OF IMPLICIT FUNCTIONS 561 D.28
FUNCTIONAL INDEPENDENCE 562 D.29 DEPENDENCY RELATIONS 563 D.30 LEGENDRE
TRANSFORMATIONS 563 D.31 HOMOGENEOUS FUNCTIONS 565 D.32 DERIVATIVES OF
HOMOGENEOUS FUNCTIONS 565 D.33 STATIONARY POINTS 566 D.34 LAGRANGE
MULTIPLIERS 566 D.35 GEOMETRY OF THE LAGRANGE MULTIPLIER THEOREM 569
D.36 COUPLED DIFFERENTIAL EQUATIONS 570 D.37 SURFACES AND ENVELOPES 572
E GEOMETRY OF PHASE SPACE 575 E.I ABSTRACT VECTOR SPACE 575 E.2
SUBSPACES 577 E.3 LINEAR OPERATORS 578 E.4 VECTORS IN PHASE SPACE 580
E.5 CANONICAL TRANSFORMATIONS IN PHASE SPACE 581 E.6 ORTHOGONAL
SUBSPACES 582 E.7 A SPECIAL CANONICAL TRANSFORMATION 582 E.8 SPECIAL
SELF-ORTHOGONAL SUBSPACES 583 E.9 ARNOLD S THEOREM 585 E.10 EXISTENCE OF
A MIXED GENERATING FUNCTION 586 REFERENCES 588 INDEX 591
|
any_adam_object | 1 |
author | Johns, Oliver Davis |
author_GND | (DE-588)159029589 |
author_facet | Johns, Oliver Davis |
author_role | aut |
author_sort | Johns, Oliver Davis |
author_variant | o d j od odj |
building | Verbundindex |
bvnumber | BV019991293 |
callnumber-first | Q - Science |
callnumber-label | QA808 |
callnumber-raw | QA808.5 |
callnumber-search | QA808.5 |
callnumber-sort | QA 3808.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 1000 |
classification_tum | PHY 041f PHY 020f PHY 200f |
ctrlnum | (OCoLC)60512562 (DE-599)BVBBV019991293 |
dewey-full | 531.01515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531.01515 |
dewey-search | 531.01515 |
dewey-sort | 3531.01515 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02598nam a2200625 c 4500</leader><controlfield tag="001">BV019991293</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060222 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050805s2005 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">019856726X</subfield><subfield code="9">0-19-856726-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198567264</subfield><subfield code="9">978-0-19-856726-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60512562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019991293</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531.01515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 041f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johns, Oliver Davis</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)159029589</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical mechanics for relativity and quantum mechanics</subfield><subfield code="c">Oliver Davis Johns</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 597 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford graduate texts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Analytic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativistische Mechanik</subfield><subfield code="0">(DE-588)4177685-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Relativistische Mechanik</subfield><subfield code="0">(DE-588)4177685-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013313205&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013313205</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV019991293 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:10:18Z |
institution | BVB |
isbn | 019856726X 9780198567264 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013313205 |
oclc_num | 60512562 |
open_access_boolean | |
owner | DE-20 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-20 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-11 DE-19 DE-BY-UBM |
physical | XX, 597 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Oxford Univ. Press |
record_format | marc |
series2 | Oxford graduate texts |
spelling | Johns, Oliver Davis Verfasser (DE-588)159029589 aut Analytical mechanics for relativity and quantum mechanics Oliver Davis Johns 1. publ. Oxford [u.a.] Oxford Univ. Press 2005 XX, 597 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford graduate texts Quantentheorie Mechanics, Analytic Quantum theory Theoretische Mechanik (DE-588)4185100-6 gnd rswk-swf Relativistische Mechanik (DE-588)4177685-9 gnd rswk-swf Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Mathematische Physik (DE-588)4037952-8 s Theoretische Mechanik (DE-588)4185100-6 s Relativistische Mechanik (DE-588)4177685-9 s Quantenmechanik (DE-588)4047989-4 s 2\p DE-604 Relativitätstheorie (DE-588)4049363-5 s 3\p DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013313205&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Johns, Oliver Davis Analytical mechanics for relativity and quantum mechanics Quantentheorie Mechanics, Analytic Quantum theory Theoretische Mechanik (DE-588)4185100-6 gnd Relativistische Mechanik (DE-588)4177685-9 gnd Relativitätstheorie (DE-588)4049363-5 gnd Quantenmechanik (DE-588)4047989-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4185100-6 (DE-588)4177685-9 (DE-588)4049363-5 (DE-588)4047989-4 (DE-588)4037952-8 (DE-588)4123623-3 |
title | Analytical mechanics for relativity and quantum mechanics |
title_auth | Analytical mechanics for relativity and quantum mechanics |
title_exact_search | Analytical mechanics for relativity and quantum mechanics |
title_full | Analytical mechanics for relativity and quantum mechanics Oliver Davis Johns |
title_fullStr | Analytical mechanics for relativity and quantum mechanics Oliver Davis Johns |
title_full_unstemmed | Analytical mechanics for relativity and quantum mechanics Oliver Davis Johns |
title_short | Analytical mechanics for relativity and quantum mechanics |
title_sort | analytical mechanics for relativity and quantum mechanics |
topic | Quantentheorie Mechanics, Analytic Quantum theory Theoretische Mechanik (DE-588)4185100-6 gnd Relativistische Mechanik (DE-588)4177685-9 gnd Relativitätstheorie (DE-588)4049363-5 gnd Quantenmechanik (DE-588)4047989-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Quantentheorie Mechanics, Analytic Quantum theory Theoretische Mechanik Relativistische Mechanik Relativitätstheorie Quantenmechanik Mathematische Physik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013313205&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT johnsoliverdavis analyticalmechanicsforrelativityandquantummechanics |