Principles of molecular photochemistry: an introduction
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Sausalito, Calif.
Univ. Science Books
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 495 S. graph. Darst. |
ISBN: | 9781891389573 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019936535 | ||
003 | DE-604 | ||
005 | 20090825 | ||
007 | t | ||
008 | 050726s2009 d||| |||| 00||| eng d | ||
020 | |a 9781891389573 |9 978-1-891389-57-3 | ||
035 | |a (OCoLC)253638192 | ||
035 | |a (DE-599)BVBBV019936535 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-29T |a DE-634 |a DE-19 |a DE-11 |a DE-83 |a DE-355 |a DE-20 | ||
050 | 0 | |a QD708.2 | |
082 | 0 | |a 541/.35 |2 22 | |
084 | |a VE 8300 |0 (DE-625)147147:253 |2 rvk | ||
084 | |a VK 5600 |0 (DE-625)147407:253 |2 rvk | ||
084 | |a CHE 189f |2 stub | ||
100 | 1 | |a Turro, Nicholas J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of molecular photochemistry |b an introduction |c Nicholas J. Turro ; V. Ramamurthy ; J. C. Scaiano |
264 | 1 | |a Sausalito, Calif. |b Univ. Science Books |c 2009 | |
300 | |a XXI, 495 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Fotoquímica |2 larpcal | |
650 | 4 | |a Photochemistry | |
650 | 0 | 7 | |a Fotochemie |0 (DE-588)4045873-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fotochemie |0 (DE-588)4045873-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ramamurthy, Vaidhyanathan |d 1946- |e Verfasser |0 (DE-588)121317978 |4 aut | |
700 | 1 | |a Scaiano, Juan C. |e Verfasser |4 aut | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013224015&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013224015 |
Datensatz im Suchindex
_version_ | 1804133439114313728 |
---|---|
adam_text | IMAGE 1
CONTENTS
PREFACE XIX
CHAPTER 1 MOLECULAR PHOTOCHEMISTRY OF ORGANIC COMPOUNDS:
AN OVERVIEW 1
1.1 WHAT IS MOLECULAR ORGANIC PHOTOCHEMISTRY? 1
1.2 LEARNING MOLECULAR ORGANIC PHOTOCHEMISTRY THROUGH THE VISUALIZATION
OF MOLECULAR STRUCTURES AND THE DYNAMICS OF THEIR TRANSFORMATIONS 3
1.3 WHY STUDY MOLECULAR ORGANIC PHOTOCHEMISTRY? 3
1.4 THE VALUE OF PICTORIAL REPRESENTATIONS AND VISUALIZATION OF
SCIENTIFIC CONCEPTS 5
1.5 SCIENTIFIC PARADIGMS OF MOLECULAR ORGANIC PHOTOCHEMISTRY 6
1.6 EXEMPLARS AS GUIDES TO THE EXPERIMENTAL STUDY AND UNDERSTANDING OF
MOLECULAR ORGANIC PHOTOCHEMISTRY 7
1.7 THE PARADIGMS OF MOLECULAR ORGANIC PHOTOCHEMISTRY 8
1.8 PARADIGMS AS GUIDES FOR PROCEEDING FROM THE POSSIBLE TO THE
PLAUSIBLE TO THE PROBABLE PHOTOCHEMICAL PROCESSES 8
1.9 SOME IMPORTANT QUESTIONS THAT WILL BE ANSWERED BY THE PARADIGMS OF
MOLECULAR ORGANIC PHOTOCHEMISTRY 10 1.1 0 FROM AGLOBAI PARADIGM TO THE
EVERYDAY WORKING PARADIGM 11
1.11 SINGLET STATES, TRIPLET STATES, DIRADICALS, AND ZWITTERIONS: KEY
STRUCTURES ALONG A PHOTOCHEMICAL PATHWAY FROM *R TO P 14
1.12 STATE ENERGY DIAGRAMS: ELECTRONIC AND SPIN ISOMERS 16 1.13 AN
ENERGY SURLACE DESCRIPTION OF MOLECULAR PHOTOCHEMISTRY 20
1.14 STRUCTURE, ENERGY, AND TIME: MOLECULAR-LEVEL BENCHMARKS AND
CALIBRATION POINTS OF PHOTOCHEMICAL PROCESSES 25 VII
IMAGE 2
VIII CONTENTS
1.15
1.16 1.17
1.18 1.19
1.20
CALIBRATION POINTS AND NUMERICAL BENCHMARKS FOR MOLECULAR ENERGETICS 26
COUNTING PHOTONS 28 COMPUTING THE ENERGY OF A MOLE OF PHOTONS FOR LIGHT
OF WAVELENGTH A AND FREQUENCY V 29
THE RANGE OF PHOTON ENERGIES IN THE ELECTROMAGNETIC SPECTRUM 29
CALIBRATION POINTS AND NUMERICAL BENCHMARKS FOR MOLECULAR DIMENSIONS AND
TIME SCALES 33
PLAN OF THE TEXT 36
REFERENCES 38
CHAPTER 2 ELECTRONIC, VIBRATIONAL, AND SPIN CONFIGURATIONS OF
ELECTRONICALLY EXCITED STATES 39
2.1 VISUALIZATION OF THE ELECTRONICALLY EXCITED STRUCTURES THROUGH THE
PARADIGMS OF MOLECULAR ORGANIC PHOTOCHEMISTRY 39
2.2 MOLECULAR WAVE FUNCTIONS AND MOLECULAR STRUCTURE 42
2.3 THE BOM-OPPENHEIMER APPROXIMATION: A STARTING POINT FOR APPROXIMATE
MOLECULAR WAVE FUNCTIONS AND ENERGIES 45
2.4 IMPORTANT QUALITATIVE CHARACTERISTICS OF APPROXIMATE WAVE FUNCTIONS
47
2.5 FROM POSTULATES OF QUANTUM MECHANICS TO OBSERVATIONS OF MOLECULAR
STRUCTURE: EXPECTATION VALUES AND MATRIX ELEMENTS 49
2.6 THE SPIRIT OF THE USE OF QUANTUM MECHANICAL WAVE FUNCTIONS,
OPERATORS, AND MATRIX ELEMENTS 50
2.7 FROM ATOMIC ORBITALS, TO MOLECULAR ORBITALS, TO ELECTRONIC
CONFIGURATIONS, TO ELECTRONIC STATES 5]
2.8 GROUND AND EXCITED ELECTRONIC CONFIGURATIONS 52
2.9 THE CONSTRUCTION OF ELECTRONIC STATES FROM ELECTRONIC CONFIGURATIONS
56 2.10 CONSTRUCTION OFEXCITED SINGLET AND TRIPLET STATES FROM
ELECTRONICALLY EXCITED CONFIGURATIONS AND THE PAULI PRINCIPLE 56
2.11 CHARACTERISTIC CONFIGURATIONS OF SINGLET AND TRIPLET STATES: A
SHORTHAND NOTATION 57
2.12 ELECTRONIC ENERGY DIFFERENCE BETWEEN MOLECULAR SINGLET AND TRIPLET
STATES OF *R: ELECTRON CORRELATION AND THE ELECTRON EXCHANGE ENERGY 58
2.13 EVALUATION OF THE RELATIVE SINGLET AND TRIPLET ENERGIES AND
SINGLET TRIPLET ENERGY GAPS FOR ELECTRONICALLY EXCITED STATES (*R) OF
THE SAME ELECTRONIC CONFIGURATION 60
2.14 EXEMPLARS FOR THE SINGLET-TRIPLET SPLITTINGS IN MOLECULAR SYSTEMS
63
IMAGE 3
IX CONTENTS
2.15 ELECTRONIC ENERGY DIFFERENCE BETWEEN SINGLET AND TRIPLET STATES OF
DIRADIEAL REACTIVE INTERMEDIATES: RADICAL PAIRS, I(RP), AND BIRADICALS,
I(BR) 66
2.16 A MODEL FOR VIBRATIONAL WAVE FUNCTIONS: THE CLASSIEAL HARMONIC
OSCILLATOR 69
2.17 THE QUANTUM MECHANIEAL VERSION OF THE CLASSIEAL HARMONIC OSCILLATOR
75
2.18 THE VIBRATIONAL LEVELS OF A QUANTUM MECHANIEAL HARMONIC OSCILLATOR
77 2.19 THE VIBRATIONAL WAVE FUNCTIONS FOR A QUANTUM MECHANICAL HARMONIE
OSCILLATOR: VISUALIZATION OF THE WAVE FUNCTIONS FOR
DIATOMIC MOLECULES 78 2.20 A FIRST-ORDER APPROXIMATION OF THE
HARMONIE-OSCILLATOR MODEL: THE ANHARMONIC OSCILLATOR 80
2.21 BUILDING QUANTUM INTUITION FOR USING WAVE FUNCTIONS 82
2.22 ELECTRON SPIN: A MODEL FOR VISUALIZING SPIN WAVE FUNCTIONS 82
2.23 A VECTOR MODEL OF ELECTRON SPIN 85
2.24 IMPORTANT PROPERTIES OF VECTORS 85
2.25 VECTOR REPRESENTATION OF ELECTRON SPIN 86
2.26 SPIN MULTIPLICITIES: ALLOWED ORIENTATIONS OF ELECTRON SPINS 87 2.27
VECTOR MODEL OF TWO COUPLED ELECTRON SPINS: SINGLET AND TRIPLET STATES
89
2.28 THE UNCERTAINTY PRINCIPLE AND CONES OF POSSIBLE ORIENTATIONS FOR
ELECTRON SPIN 92
2.29 CONES OF POSSIBLE ORIENTATIONS FOR TWO COUPLED 1/2 SPINS: SINGLET
AND TRIPLET CONES OF ORIENTATION AS A BASIS FOR VISUALIZING THE
INTERCONVERSION OF SPIN STATES 93 2.30 MAKING A CONNECTION BETWEEN SPIN
ANGULAR MOMENTUM AND
MAGNETIC MOMENTS DUE TO SPIN ANGULAR MOMENTUM 94
2.31 THE CONNECTION BETWEEN ANGULAR MOMENTUM AND MAGNETIC MOMENTS: A
PHYSIEAL MODEL FOR AN ELECTRON WITH ANGULAR MOMENTUM 94
2.32 THE MAGNETIC MOMENT OF AN ELECTRON IN A BOHR ORBIT 95 2.33 THE
CONNECTION BETWEEN MAGNETIE MOMENT AND ELECTRON SPIN 97
2.34 MAGNETIC ENERGY LEVELS IN AN APPLIED MAGNETIC FIELD FOR A CLASSIEAL
MAGNET 99 2.35 QUANTUM MAGNETS IN THE ABSENCE OF COUPLING MAGNETIE
FIELDS 101
2.36 QUANTUM MECHANIEAL MAGNETS IN A MAGNETIE FIELD: CONSTRUCTING A
MAGNETIC STATE ENERGY DIAGRAM FOR SPINS IN AN APPLIED MAGNETIE FIELD 102
2.37 MAGNETIC ENERGY DIAGRAM FOR A SINGLE ELECTRON SPIN AND FOR TWO
COUPLED ELECTRON SPINS 103
IMAGE 4
X CONTENTS
2.38
2.39
2.40
CHAPTER 3
3.1
3.2 3.3
3.4 3.5
3.6 3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18 3.19
3.20
MAGNETIC ENERGY DIAGRAMS INCLUDING THE E1ECTRON EXCHANGE INTERACTION, J
104 INTERACTIONS BETWEEN TWO MAGNETIC DIPOLES: ORIENTATION AND DISTANCE
DEPENDENCE OF THE ENERGY OF MAGNETIC INTERACTIONS 106
SUMMARY: STRUCTURE AND ENERGETICS OF ELECTRONS, VIBRATIONS, AND SPINS
108 REFERENCES 108
TRANSITIONS BETWEEN STATES: PHOTOPHYSICAL PROCESSES 109
TRANSITIONS BETWEEN STATES 109 A STARTING POINT FOR MODE1ING TRANSITIONS
BETWEEN STATES 111 C1ASSICA1 CHEMICA1 DYNAMICS: SOME PRE1IMINARY
COMMENTS 112
QUANTUM DYNAMICS: TRANSITIONS BETWEEN STATES 113 PERTURBATION THEORY 113
THE SPIRIT OF SELECTION RULES FOR TRANSITION PROBABILITIES 118 NUCLEAR
VIBRATIONA1 MOTION AS A TRIGGER FOR E1ECTRONIC TRANSITIONS. VIBRONIC
COUP1ING AND VIBRONIC STATES: THE EFFECT OFNUCLEAR MOTION ON ELECTRONIC
ENERGY AND E1ECTRONIC STRUCTURE 119
THE EFFECT OF VIBRATIONS ON TRANSITIONS BETWEEN E1ECTRONIC STATES: THE
FRANCK-CONDON PRINCIPLE 122 A C1ASSICA1 AND SEMICLASSICAL HARMONIC
OSCILLATOR MODEL OF THE FRANCK-CONDON PRINCIP1E FOR RADIATIVE
TRANSITIONS (R + HV ~ *R
AND *R ~ R + HV) 124
A QUANTUM MECHANICA1 INTERPRETATION OF THE FRANCK-CONDON PRINCIPLE AND
RADIATIVE TRANSITIONS 128 THE FRANCK-CONDON PRINCIPLE AND RADIATION1ESS
TRANSITIONS (*R ~ R + HEAT) 130
RADIATION1ESS AND RADIATIVE TRANSITIONS BETWEEN SPIN STATES OF DIFFERENT
MULTIPLICITY 134 SPIN DYNAMICS: C1ASSICA1 PRECESSION OF THE ANGULAR
MOMENTUM VECTOR 135 PRECESSION OF A QUANTUM MECHANICA1 MAGNET IN THE
CONES OFPOSSIBLE ORIENTATIONS 139
IMPORTANT CHARACTERISTICS OF SPIN PRECESSION 141
SOME QUANTITATIVE BENCHMARK RE1ATIONSHIPS BETWEEN THE STRENGTH OF A
COUP1ED MAGNETIC FIE1D AND PRECESSIONA1 RATES 142
TRANSITIONS BETWEEN SPIN STATES: MAGNETIC ENERGIES AND INTERACTIONS 144
THE RO1E OF E1ECTRON EXCHANGE (J) IN COUPLING ELECTRON SPINS 144
COUPLINGS OF A SPIN WITH A MAGNETIC FIE1D: VISUALIZATION OF SPIN
TRANSITIONS AND INTERSYSTEM CROSSING 146 VECTOR MODEL FOR TRANSITIONS
BETWEEN MAGNETIC STATES 148
IMAGE 5
XI CONTENTS
3.21 SPIN-ORBIT COUPLING: A DOMINANT MECHANISM FOR INDUCING SPIN CHANGES
IN ORGANIC MOLECULES 149 3.22 COUPLING OF TWO SPINS WITH A THIRD SPIN:
T+ ~ S AND T_ ~ S TRANSITIONS 157
3.23 COUPLING INVOLVING TWO CORRELATED SPINS: TA ~ S TRANSITIONS 158
3.24 INTERSYSTEM CROSSING IN DIRADICALS, I(D): RADICAL PAIRS, I(RP), AND
BIRADICALS,I(BR) 159
3.25 SPIN-ORBIT COUPLING IN I(D): THE ROLE OF RELATIVE ORBITAL
ORIENTATION 160 3.26 INTERSYSTEM CROSSING IN FLEXIBLE BIRADICALS 164
3.27 WHAT ALL TRANSITIONS BETWEEN STATES HAVE IN COMMON 166
REFERENCES 167
CHAPTER 4 RADIATIVE TRANSITIONS BETWEEN ELECTRONIC STATES 169
4.1 THE ABSORPTION AND EMISSION OFLIGHT BY ORGANIC MOLECULES 169
4.2 THE NATURE OF LIGHT: ASERIES OF PARADIGM SHIFTS 169
4.3 BLACK-BODY RADIATION AND THE ULTRAVIOLET CATASTROPHE AND PLANCK S
QUANTIZATION OF LIGHT ENERGY: THE ENERGY QUANTUM IS POSTULATED 172
4.4 THE PHOTOELECTRIC EFFECT AND EINSTEIN S QUANTIZATION OFLIGHT-THE
QUANTUM OF LIGHT: PHOTONS 173 4.5 IF LIGHT WAVES HAVE THE PROPERTIES OF
PARTICLES, DO PARTICLES HAVE THE PROPERTIES OF WAVES? -DE BROGLIE
INTEGRATES MATTER AND LIGHT 176 4.6 ABSORPTION AND EMISSION SPECTRA OF
ORGANIC MOLECULES: THE STATE
ENERGY DIAGRAM AS A PARADIGM FOR MOLECULAR PHOTOPHYSICS 178
4.7 SOME EXAMPLES OF EXPERIMENTAL ABSORPTION AND EMISSION SPECTRA OF
ORGANIC MOLECULES: BENCHMARKS 178 4.8 THE NATURE OFLIGHT: FROM PARTICLES
TO WAVES TO WAVE PARTICLES 181
4.9 A PICTORIAL REPRESENTATION OF THE ABSORPTION OF LIGHT 181 4.10 THE
INTERACTION OF ELECTRONS WITH THE ELECTRIC AND MAGNETIC FORCES OF LIGHT
182
4.11 A MECHANISTIC VIEW OF THE INTERACTION OF LIGHT WITH MOLECULES:
LIGHT AS A WAVE 184
4.12 AN EXEMPLAR OF THE INTERACTION OF LIGHT WITH MATTER: THE HYDROGEN
ATOM 185 4.13 FROM THE CLASSICAL REPRESENTATION TO A QUANTUM MECHANICAL
REPRESENTATION OF LIGHT ABSORPTION BY A HYDROGEN ATOM AND A
HYDROGEN MOLECULE 188 4.14 PHOTONS AS MASSLESS REAGENTS 191
4.15 RELATIONSHIP OF EXPERIMENTAL SPECTROSCOPIC QUANTITIES TO
THEORETICAL QUANTITIES 194
4.16 THE OSCILLATOR STRENGTH CONCEPT 195
IMAGE 6
XII CONTENTS
4.17 THE RELATIONSHIP BETWEEN THE CLASSICAL CONCEPT OF OSCILLATOR
STRENGTH AND THE QUANTUM MECHANICAL TRANSITION DIPOLE MOMENT 196
4.18 EXAMPLES OFTHE RELATIONSHIPS OFS. K2. R~, I1 L L P 1 11 2 . AND
F 197 4.19 EXPERIMENTAL TESTS OF THE QUANTITATIVE THEORY RELATING
EMISSION AND ABSORPTION TO SPECTROSCOPIC QUANTITIES 200
4.20 THE SHAPES OF ABSORPTION AND EMISSION SPECTRA 201
4.21 THE FRANCK-CONDON PRINCIPLE AND ABSORPTION SPECTRA OF ORGANIE
MOLEEULES 204
4.22 THE FRANCK-CONDON PRINCIPLE AND EMISSION SPECTRA 208
4.23 THE EFFECT OF ORBITAL CONFIGURATION MIXING AND MULTIPLICITY MIXING
ON RADIATIVE TRANSITIONS 210
4.24 EXPERIMENTAL EXEMPLARS OF THE ABSORPTION AND EMISSION OF LIGHT BY
ORGANIC MOLEEULES 214
4.25 ABSORPTION, EMISSION, AND EXCITATION SPECTRA 215
4.26 ORDER OF MAGNITUDE ESTIMATES OF RADIATIVE TRANSITION PARAMETERS 218
4.27 QUANTUM YIELDS FOR EMISSION (*R ~ R + HV) 223
4.28 EXPERIMENTAL EXAMPLES OF FLUORESCENCE QUANTUM YIELDS 230
4.29 DETERMINATION OF STATE ENERGIES ES AND E T FROM EMISSION SPECTRA
234
4.30 SPIN-ORBIT COUPLING AND SPIN-FORBIDDEN RADIATIVE TRANSITIONS 235
4.31 RADIATIVE TRANSITIONS INVOLVING A CHANGE IN MULTIPLICITY: SO *+
T(N,1T*) AND SO *+ (1T ,1T*) TRANSITIONS AS EXEMPLARS 237
4.32 EXPERIMENTAL EXEMPLARS OF SPIN-FORBIDDEN RADIATIVE TRANSITIONS: SO
~ TL ABSORPTION AND T 1 ~ SO PHOSPHORESCENCE 240
4.33 QUANTUM YIELDS OF PHOSPHORESCENCE, L P: THE TL ~ SO + HV PROCESS
243
4.34 PHOSPHORESCENCE IN FLUID SOLUTION AT ROOM TEMPERATURE 244
4.35 ABSORPTION SPECTRA OF ELECTRONICALLY EXCITED STATES 245
4.36 RADIATIVE TRANSITIONS INVOLVING TWO MOLECULES: ABSORPTION COMPLEXES
AND EXCIPLEXES 247
4.37 EXAMPLES OF GROUND-STATE CHARGE-TRANSFER ABSORPTION COMPLEXES 248
4.38 EXCIMERS AND EXCIPLEXES 249
4.39 EXEMPLARS OF EXCIMERS: PYRENE AND AROMATIC COMPOUNDS 253
4.40 EXCIPLEXES AND EXCIPLEX EMISSION 256
4.41 TWISTED INTRAMOLECULAR CHARGE-TRANSFER STATES 257
4.42 EMISSION FROM UPPER EXCITED SINGLETS AND TRIPIES: THE AZULENE
ANOMALY 260
REFERENCES 262
IMAGE 7
265
CONTENTS XIII
CHAPTER 5 PHOTOPHYSICAL RADIATIONLESS TRANSITIONS
5.1 PHOTOPHYSICAL RADIATIONLESS TRANSITIONS AS A FORM OF ELECTRONIC
RELAXATION 265
5.2 RADIATIONLESS ELECTRONIC TRANSITIONS AS THE MOTION OF A
REPRESENTATIVE POINT ON ELECTRONIC ENERGY SURFACES 266
5.3 WAVE MECHANICAL INTERPRETATION OF RADIATION1ESS TRANSITIONS BETWEEN
STATES 270
5.4 RADIATION1ESS TRANSITIONS AND THE BREAKDOWN OF THE BORN OPPENHEIMER
APPROXIMATION 275 5.5 AN ESSENTIAL DIFFERENCE BETWEEN STRONGLY AVOIDING
AND MATCHING SURFACES 275
5.6 CONICAL INTERSECTIONS NEAR ZERO-ORDER SURFACE CROSSINGS 275
5.7 FORMULATION OF A PARAMETERIZED MODEL OF RADIATIONLESS TRANSITIONS
276
5.8 VISUALIZATION OF RADIATIONLESS TRANSITIONS PROMOTED BY VIBRATIONAL
MOTION; VIBRONIC MIXING 277
5.9 INTERSYSTEM CROSSING: VISUALIZATION OF RADIATION1ESS TRANSITIONS
PROMOTED BY SPIN-ORBIT COUPLING 281 5.10 SELECTION RULES FOR INTERSYSTEM
CROSSING IN MOLECU1ES 282
5.11 THE RELATIONSHIP OF RATES AND EFFICIENCIES OF RADIATIONLESS
TRANSITIONS TO MO1ECU1AR STRUCTURE: STRETCHING AND TWISTING AS
MECHANISMS FOR INDUCING E1ECTRONIC RADIATIONLESS TRANSITIONS 287
5.12 THE LOOSE BOLT AND FREE-ROTOR EFFECTS: PROMOTER AND ACCEPTOR
VIBRATIONS 288
5.13 RADIATION1ESS TRANSITIONS BETWEEN MATCHING SURFACES SEPARATED BY
LARGE ENERGIES 291
5.14 FACTORS THAT INFLUENCE THE RATE OFVIBRATIONAL RELAXATION 293
5.15 THE EVALUATION OF RATE CONSTANTS FOR RADIATION1ESS PROCESSES FROM
QUANTITATIVE EMISSION PARAMETERS 296
5.16 EXAMPLES OF THE ESTIMATION OF RATES OF PHOTOPHYSICAL PROCESSES FROM
SPECTROSCOPIC EMISSION DATA 298
5.17 INTERNAL CONVERSION (SN -+ SI SI -+ SO, TN -+ TL) 300 5.18 THE
RELATIONSHIP OF INTERNAL CONVERSION TO THE EXCITED-STATE STRUCTURE OF
,*R 301
5.19 THE ENERGY GAP LAW FOR INTERNAL CONVERSION (SI -+ SO) 303 5.20 THE
DEUTERIUM ISOTOPE TEST FOR INTERNA! CONVERSION 304
5.21 EXAMPLES OF UNUSUALLY SLOW SN -+ SI INTERNAL CONVERSION 305
5.22 INTERSYSTEM CROSSING FROM SI -+ TL 306
5.23 THE RELATIONSHIP BETWEEN SI -+ TL INTERSYSTEM CROSSING TO MOLECULAR
STRUCTURE 307
5.24 TEMPERATURE DEPENDENCE OF SI -+ T N INTERSYSTEM CROSSING 308
IMAGE 8
XIV CONTENTS
5.25 INTERSYSTEM CROSSING (TI -+ SO) 309
5.26 THE RELATIONSHIP BETWEEN TI -+ SO INTERSYSTEM CROSSING AND
MOLECULAR STRUCTURE 309
5.27 THE ENERGY GAP LAW FOR TI -+ SO INTERSYSTEM CROSSING: DEUTERIUM
ISOTOPE EFFECTS ON INTERSTATE CROSSINGS 310
5.28 PERTURBATION OF SPIN-FORBIDDEN RADIATIONLESS TRANSITIONS 311 5.29
INTERNAL PERTURBATION OF INTERSYSTEM CROSSING BY THE HEAVY-ATOM EFFECT
312
5.30 EXTERNAL PERTURBATION OF INTERSYSTEM CROSSING 313
5.31 THE RELATIONSHIP BETWEEN PHOTOPHYSICAL RADIATIONLESS TRANSITIONS
AND PHOTOCHEMICAL PROCESSES 314 REFERENCES 315
CHAPTER 6 A THEORY OF MOLECULAR ORGANIC PHOTOCHEMISTRY 319
6.1 INTRODUCTION TO A THEORY OF ORGANIC PHOTOREACTIONS 319
6.2 POTENTIAL ENERGY CURVES AND SURFACES 322
6.3 MOVEMENT OF A CLASSICAL REPRESENTATIVE POINT ON A SURFACE 323
6.4 THE INFLUENCE OF COLLISIONS AND VIBRATIONS ON THE MOTION OF THE
REPRESENTATIVE POINT ON AN ENERGY SURFACE 325
6.5 RADIATION1ESS TRANSITIONS ON PE SURFACES: SURFACE MAXIMA, SURFACE
MINIMA, AND FUNNELS ON THE WAY FROM *R TO P 325
6.6 AGLOBAI PARADIGM FOR ORGANIC PHOTOCHEMICAL REACTIONS 326
6.7 TOWARD A GENERAL THEORY OF ORGANIC PHOTOCHEMICAL REACTIONS BASED ON
POTENTIAL ENERGY SURFACES 328
6.8 DETERMINING PLAUSIBLE MOLECULAR STRUCTURES AND PLAUSIBLE REACTION
PATHWAYS OF PHOTOCHEMICAL REACTIONS 330
6.9 THE FUNDAMENTAL SURFACE TOPOLOGIES FOR FUNNELS FROM EXCITED
SURFACES TO GROUND-STATE SURFACES: SPECTROSCOPIC MINIMA, EXTENDED
SURFACE TOUCHINGS, SURFACE MATCHINGS, SURFACE CROSSINGS, AND SURFACE
AVOIDINGS 330
6.10 FROM 2D PE CURVES TO 3D PE SURFACES: THE LUMP FROM TWO DIMENSIONS
TO THREE DIMENSIONS 333
6.11 THE NATURE OF FUNNELS CORRESPONDING TO SURFACE AVOIDINGS AND
SURFACE TOUCHINGS INVOLVED IN PRIMARY PHOTOCHEMICAL PROCESSES 334 6.12
THE NONCROSSING RULE AND ITS VIOLATIONS: CONICAL INTERSECTIONS AND
THEIR VISUALIZATION 335
6.13 SOME IMPORTANT AND UNIQUE PROPERTIES OF CONICAL INTERSECTIONS 337
6.14 DIRADICALOID STRUCTURES AND DIRADICALOID GEOMETRIES 341
6.15 DIRADICALOID STRUCTURES PRODUCED FROM STRETCHING ABONDS AND
TWISTING RR BONDS 344
IMAGE 9
CONTENTS XV
6.16 AN EXEMPLAR FOR DIRADICALOID GEOMETRIES PRODUCED BY A-BOND
STRETCHING AND BOND BREAKING: STRETCHING OF THE A BOND OF THE HYDROGEN
MOLECULE 344
6.17 AN EXEMPLAR FOR DIRADICALOID GEOMETRIES PRODUCED BY RR -BOND
1 VISTING AND BREAKING: TWISTING OF THE RR BOND OF ETHYLENE 348
6.18 FRONTIER ORBITAL INTERACTIONS AS A GUIDE TO THE LOWEST-ENERGY
PATHWAYS AND ENERGY BARRIERS ON ENERGY SURFACES 351 6.19 THE PRINCIPLE
OF MAXIMUM POSITIVE ORBITAL OVERLAP FOR FRONTIER ORBITALS 353
6.20 STABILIZATION BY ORBITAL INTERACTIONS: SELECTION RULES BASED ON
MAXIMUM POSITIVE OVERLAP AND MINIMUM ENERGY GAP 353
6.21 COMMONLY ENCOUNTERED ORBITALINTERACTIONS IN ORGANIC PHOTOREACTIONS
354
6.22 SELECTION OF REACTION COORDINATES FROM ORBITALINTERACTIONS FOR *R ~
I OR *R ~ F ~ P REACTIONS: EXEMPLARS OF CONCERTED PHOTOCHEMICAL
REACTIONS AND PHOTOCHEMICAL REACTIONS THAT INVOLVE DIRADICALOID
INTERMEDIATES 357
6.23 ELECTRONIC ORBITAL AND STATE CORRELATION DIAGRAMS 357 6.24 AN
EXEMPLAR FOR PHOTOCHEMICAL CONCERTED PERICYCLIC REACTIONS: THE
ELECTROCYCLIC RING OPENING OF CYCLOBUTENE AND RING CLOSURE OF
1,3-BUTADIENE 358
6.25 FRONTIER ORBITALINTERACTIONS INVOLVING RADICALS AS MODELS FOR
HALF-FILLED MOLECULAR ORBITALS 359
6.26 ORBITAL AND STATE CORRELATION DIAGRAMS 362
6.27 THE CONSTRUCTION OF ELECTRON ORBITAL AND STATE CORRELATION DIAGRAMS
FOR A SELECTED REACTION COORDINATE 364
6.28 TYPICAL STATE CORRELATION DIAGRAMS FOR CONCERTED PHOTOCHEMICAL
PERICYCLIC REACTIONS 364 6.29 CLASSIFICATION OF ORBITALS AND STATES FOR
THE ELECTROCYCLIC REACTIONS OF CYCLOBUTENE AN4 1,3-BUTADIENE: AN
EXEMPLAR CONCERTED
REACTION 364
6.30 CONCERTED PHOTOCHEMICAL PERICYCLIC REACTIONS AND CONICAL
INTERSECTIONS 368
6.31 TYPICAL STATE CORRELATION DIAGRAMS FOR NONCONCERTED PHOTOREACTIONS:
REACTIONS INVOLVING INTERMEDIATES (DIRADICALS AND ZWITTERIONS) 368 6.32
NATURAL ORBITAL CORRELATION DIAGRAMS 368
6.33 THE ROLE OF SMALL BARRIERS IN DETERMINING THE EFFICIENCIES OF
PHOTOCHEMICAL PROCESSES 369 6.34 AN EXEMPLAR FOR THE PHOTOCHEMICAL
REACTIONS OF N,RR* STATES 370
6.35 THE SYMMETRY PLANE ASSUMPTION: SALEM DIAGRAMS 372 6.36 AN EXEMPLAR
STATE CORRELATION DIAGRAM FOR N-ORBITAL INITIATED REACTION OF N,RR*
STATES: HYDROGEN ABSTRACTION VIA A COPLANAR REACTION COORDINATE 372
IMAGE 10
XVI CONTENTS
6.37 EXTENSION OF AN EXEMPLAR STATE CORRELATION DIAGRAM TO NEW
SITUATIONS 375
6.38 STATE CORRELATION DIAGRAMS FOR A-CLEAVAGE OF KETONES 375
6.39 A STANDARD SET OF PLAUSIBLE PRIMARY PHOTOREACTIONS FOR 7T: ,7T:*
AND N, 7T:* STATES 378
6.40 THE CHARACTERISTIC PLAUSIBLE PRIMARY PHOTOCHEMISTRY PROCESSES OF
7T: ,7T:* STATES 378
6.41 THE CHARACTERISTIC PLAUSIBLE PRIMARY PHOTOCHEMICAL PROCESSES OF
N,7T:* STATES 380
6.42 SUMMARY: ENERGY SURFACES AS REACTION GRAPHS OR MAPS 381
REFERENCES 382
CHAPTER 7 ENERGY TRANSFER AND ELECTRON TRANSFER 383
7.1 INTRODUCTION TO ENERGY AND ELECTRON TRANSFER 383
7.2 THE ELECTRON EXCHANGE INTERACTION FOR ENERGY AND ELECTRON TRANSFER
387 7.3 TRIVIAL MECHANISMS FOR ENERGY AND ELECTRON TRANSFER 391 7.4
ENERGY AND ELECTRON TRANSFER MECHANISMS: SIMILARITIES AND
DIFFERENCES 396
7.5 VISUALIZATION OF ENERGY TRANSFER BY DIPOLE-DIPOLE INTERACTIONS: A
TRANSMITTER-ANTENNA RECEIVER-ANTENNA MECHANISM 399
7.6 QUANTITATIVE ASPECTS OF THE FOERSTER THEORY OF DIPOLE-DIPOLE ENERGY
TRANSFER 400 7.7 THE RELATIONSHIP OF K ET TO ENERGY-TRANSFER EFFICIENCY
AND SEPARATION OF DONOR AND ACCEPTOR R DA 404 7.8 EXPERIMENTAL TESTS FOR
DIPOLE-DIPOLE ENERGY TRANSFER 406
7.9 ELECTRON EXCHANGE PROCESSES: ENERGY TRANSFER RESULTING FROM
COLLISIONS AND OVERLAP OF ELECTRON CLOUDS 411
7.10 ELECTRON EXCHANGE: AN ORBITAL OVERLAP OR COLLISION MECHANISM OF
ENERGY TRANSFER 411 7.11 ELECTRON-TRANSFER PROCESSES LEADING TO EXCITED
STATES 413
7.12 TRIPLET-TRIPLET ANNIHILATION (TTA): A SPECIAL CASE OF ENERGY
TRANSFER VIA ELECTRON EXCHANGE INTERACTIONS 414
7.13 ELECTRON TRANSFER: MECHANISMS AND ENERGETICS 416 7.14 MARCUS THEORY
OF ELECTRON TRANSFER 424
7.15 A CLOSER LOOK AT THE REACTION COORDINATE FOR ELECTRON TRANSFER 436
7.16 EXPERIMENTAL VERIFICATION OF THE MARCUS INVERTED REGION FOR
PHOTOINDUCED ELECTRON TRANSFER 438
7.17 EXAMPLES OF PHOTOINDUCED ELECTRON TRANSFER THAT DEMONSTRATE THE
MARCUS THEORY 441 7.18 LONG-DISTANCE ELECTRON TRANSFER 441
IMAGE 11
CONTENTS XVII
7.19 MECHANISMS OFLONG-DISTANCE ELECTRON TRANSFER: THROUGH-SPACE AND
THROUGH-BOND INTERACTIONS 442 7.20 A QUANTITATIVE COMPARISON OF
TRIPLET-TRIPLET ENERGY AND ELECTRON TRANSFER 445
7.21 A CONNECTION BETWEEN INTRAMOLECULAR ELECTRON, HOLE, AND TRIPLET
TRANSFER 446
7.22 PHOTOINDUCED ELECTRON TRANSFER BETWEEN DONOR AND ACCEPTOR MOIETIES
CONNECTED BY A FLEXIBLE SPACER 447
7.23 EXPERIMENTAL OBSERVATION OF THE MARCUS INVERSION REGION FOR FREELY
DIFFUSING SPECIES IN SOLUTION 448 7.24 CONTROL OF THE RATE AND
EFFICIENCY OF ELECTRON-TRANSFER SEPARATION BY CONTROLLING CHANGES IN THE
DRIVING FORCE FOR ELECTRON TRANSFER 449 7.25 APPLICATION OF MARCUS
THEORY TO THE CONTROL OF PRODUCT
DISTRIBUTIONS 451
7.26 THE CONTINUUM OF STRUCTURES FROM CHARGE TRANSFER TO FREE IONS:
EXCIPLEXES, CONTACT ION PAIRS, SOLVENT SEPARATED RADICAL ION PAIRS, AND
FREE ION PAIRS 454
7.27 COMPARISON BETWEEN EXCIPLEXES AND CONTACT RADICAL ION PAIRS 458
7.28 ENERGY AND ELECTRON-TRANSFER EQUILIBRIA 461 7.29 ENERGY-TRANSFER
EQUILIBRIA 461 7.30 ELECTRON-TRANSFER EQUILIBRIA IN THE GROUND STATE 463
7.31 EXCITED-STATE ELECTRON-TRANSFER EQUILIBRIA 463
7.32 EXCITED-STATE FORMATION RESULTING FROM ELECTRON-TRANSFER REACTIONS:
CHEMILUMINESCENT REACTIONS 464
7.33 ROLE OF MOLECULAR DIFFUSION IN ENERGY AND ELECTRON-TRANSFER
PROCESSES IN SOLUTION 466
7.34 AN EXEMPLAR INVOLVING ENERGY TRANSFER CONTROLLED BY DIFFUSION 467
7.35 ESTIMATION OFRATE CONSTANTS FOR DIFFUSION CONTROLLED PROCESSES 469
7.36 EXAMPLES OF NEAR-DIFFUSION-CONTROLLED REACTIONS: REVERSIBLE
FORMATION OF COLLISION COMPLEXES 472 7.37 THE CAGE EFFECT 474
7.38 DISTANCE-TIME RELATIONSHIPS FOR DIFFUSION 476 7.39 DIFFUSION
CONTROL IN SYSTEMS INVOLVING CHARGED SPECIES 478 7.40 SUMMARY 479
REFERENCES 479
INDEX 483
|
any_adam_object | 1 |
author | Turro, Nicholas J. Ramamurthy, Vaidhyanathan 1946- Scaiano, Juan C. |
author_GND | (DE-588)121317978 |
author_facet | Turro, Nicholas J. Ramamurthy, Vaidhyanathan 1946- Scaiano, Juan C. |
author_role | aut aut aut |
author_sort | Turro, Nicholas J. |
author_variant | n j t nj njt v r vr j c s jc jcs |
building | Verbundindex |
bvnumber | BV019936535 |
callnumber-first | Q - Science |
callnumber-label | QD708 |
callnumber-raw | QD708.2 |
callnumber-search | QD708.2 |
callnumber-sort | QD 3708.2 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 8300 VK 5600 |
classification_tum | CHE 189f |
ctrlnum | (OCoLC)253638192 (DE-599)BVBBV019936535 |
dewey-full | 541/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541/.35 |
dewey-search | 541/.35 |
dewey-sort | 3541 235 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01600nam a2200409 c 4500</leader><controlfield tag="001">BV019936535</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090825 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050726s2009 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781891389573</subfield><subfield code="9">978-1-891389-57-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)253638192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019936535</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD708.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541/.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 8300</subfield><subfield code="0">(DE-625)147147:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5600</subfield><subfield code="0">(DE-625)147407:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 189f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Turro, Nicholas J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of molecular photochemistry</subfield><subfield code="b">an introduction</subfield><subfield code="c">Nicholas J. Turro ; V. Ramamurthy ; J. C. Scaiano</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sausalito, Calif.</subfield><subfield code="b">Univ. Science Books</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 495 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fotoquímica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photochemistry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fotochemie</subfield><subfield code="0">(DE-588)4045873-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fotochemie</subfield><subfield code="0">(DE-588)4045873-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramamurthy, Vaidhyanathan</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121317978</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scaiano, Juan C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013224015&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013224015</subfield></datafield></record></collection> |
id | DE-604.BV019936535 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:08:44Z |
institution | BVB |
isbn | 9781891389573 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013224015 |
oclc_num | 253638192 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-634 DE-19 DE-BY-UBM DE-11 DE-83 DE-355 DE-BY-UBR DE-20 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-634 DE-19 DE-BY-UBM DE-11 DE-83 DE-355 DE-BY-UBR DE-20 |
physical | XXI, 495 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Univ. Science Books |
record_format | marc |
spelling | Turro, Nicholas J. Verfasser aut Principles of molecular photochemistry an introduction Nicholas J. Turro ; V. Ramamurthy ; J. C. Scaiano Sausalito, Calif. Univ. Science Books 2009 XXI, 495 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Fotoquímica larpcal Photochemistry Fotochemie (DE-588)4045873-8 gnd rswk-swf Fotochemie (DE-588)4045873-8 s DE-604 Ramamurthy, Vaidhyanathan 1946- Verfasser (DE-588)121317978 aut Scaiano, Juan C. Verfasser aut OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013224015&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Turro, Nicholas J. Ramamurthy, Vaidhyanathan 1946- Scaiano, Juan C. Principles of molecular photochemistry an introduction Fotoquímica larpcal Photochemistry Fotochemie (DE-588)4045873-8 gnd |
subject_GND | (DE-588)4045873-8 |
title | Principles of molecular photochemistry an introduction |
title_auth | Principles of molecular photochemistry an introduction |
title_exact_search | Principles of molecular photochemistry an introduction |
title_full | Principles of molecular photochemistry an introduction Nicholas J. Turro ; V. Ramamurthy ; J. C. Scaiano |
title_fullStr | Principles of molecular photochemistry an introduction Nicholas J. Turro ; V. Ramamurthy ; J. C. Scaiano |
title_full_unstemmed | Principles of molecular photochemistry an introduction Nicholas J. Turro ; V. Ramamurthy ; J. C. Scaiano |
title_short | Principles of molecular photochemistry |
title_sort | principles of molecular photochemistry an introduction |
title_sub | an introduction |
topic | Fotoquímica larpcal Photochemistry Fotochemie (DE-588)4045873-8 gnd |
topic_facet | Fotoquímica Photochemistry Fotochemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013224015&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT turronicholasj principlesofmolecularphotochemistryanintroduction AT ramamurthyvaidhyanathan principlesofmolecularphotochemistryanintroduction AT scaianojuanc principlesofmolecularphotochemistryanintroduction |