Lie groups, Lie algebras, and representations: an elementary introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2004
|
Ausgabe: | Corr. 2. print. |
Schriftenreihe: | Graduate texts in mathematics
222 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XIV, 351 S. graph. Darst. |
ISBN: | 0387401229 9781441923134 9780387215549 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV019850495 | ||
003 | DE-604 | ||
005 | 20131009 | ||
007 | t | ||
008 | 050620s2004 xxud||| |||| 00||| eng d | ||
020 | |a 0387401229 |9 0-387-40122-9 | ||
020 | |a 9781441923134 |9 978-1-4419-2313-4 | ||
020 | |a 9780387215549 |9 978-0-387-21554-9 | ||
035 | |a (OCoLC)249922892 | ||
035 | |a (DE-599)BVBBV019850495 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-739 |a DE-91G |a DE-355 |a DE-19 |a DE-29T |a DE-634 |a DE-11 |a DE-20 |a DE-703 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512.55 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 173f |2 stub | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Hall, Brian C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie groups, Lie algebras, and representations |b an elementary introduction |c Brian C. Hall |
250 | |a Corr. 2. print. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2004 | |
300 | |a XIV, 351 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 222 | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Lie-Gruppe - Lie-Algebra - Darstellungstheorie | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of algebras | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 222 |w (DE-604)BV000000067 |9 222 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013175207&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013175207 |
Datensatz im Suchindex
_version_ | 1804133365492744192 |
---|---|
adam_text | Titel: Lie groups, Lie algebras, and representations
Autor: Hall, Brian C
Jahr: 2004
Contents
Part I General Theory
Matrix Lie Groups......................................... 3
1.1 Definition of a Matrix Lie Group.......................... 3
1.1.1 Counterexamples.................................. 4
1.2 Examples of Matrix Lie Groups........................... 4
1.2.1 The general linear groups GL(n;R) and GL(n;C)...... 4
1.2.2 The special linear groups SL(n;E) and SL(n;C)....... 5
1.2.3 The orthogonal and special orthogonal groups, 0(n)
and SO(n)........................................ 5
1.2.4 The unitary and special unitary groups, U(n) and SU(n) 6
1.2.5 The complex orthogonal groups, 0(n;C) and SO(n;C) . 6
1.2.6 The generalized orthogonal and Lorentz groups....... 7
1.2.7 The symplectic groups Sp(n;R), Sp(n;C), and Sp(n) ... 7
1.2.8 The Heisenberg group H........................... 8
1.2.9 The groups R*,C*, S R, and Rn................... 9
1.2.10 The Euclidean and Poincare groups E(n) and P(n; 1)... 9
1.3 Compactness............................................ 11
1.3.1 Examples of compact groups........................ 11
1.3.2 Examples of noncompact groups..................... 11
1.4 Connectedness.......................................... 12
1.5 Simple Connectedness.................................... 15
1.6 Homomorphisms and Isomorphisms........................ 17
1.6.1 Example: SU(2) and SO(3) ......................... 18
1.7 The Polar Decomposition for SL(n; R) and SL(n; C) ......... 19
1.8 Lie Groups............................................. 20
1.9 Exercises............................................... 23
Lie Algebras and the Exponential Mapping................ 27
2.1 The Matrix Exponential.................................. 27
2.2 Computing the Exponential of a Matrix.................... 30
Contents
2.2.1 Case 1: X is diagonalizable......................... 30
2.2.2 Case 2: X is nilpotent.............................. 31
2.2.3 Case 3: X arbitrary................................ 32
2.3 The Matrix Logarithm................................... 32
2.4 Further Properties of the Matrix Exponential............... 35
2.5 The Lie Algebra of a Matrix Lie Group .................... 38
2.5.1 Physicists Convention............................. 39
2.5.2 The general linear groups........................... 39
2.5.3 The special linear groups........................... 40
2.5.4 The unitary groups................................ 40
2.5.5 The orthogonal groups............................. 40
2.5.6 The generalized orthogonal groups .................. 41
2.5.7 The symplectic groups............................. 41
2.5.8 The Heisenberg group.............................. 41
2.5.9 The Euclidean and Poincare groups.................. 42
2.6 Properties of the Lie Algebra............................. 43
2.7 The Exponential Mapping................................ 48
2.8 Lie Algebras............................................ 53
2.8.1 Structure constants................................ 56
2.8.2 Direct sums ___.................................. 56
2.9 The Complexification of a Real Lie Algebra................. 56
2.10 Exercises............................................... 58
The Baker-Campbell-Hausdorff Formula.................. 63
3.1 The Baker-Campbell-Hausdorff Formula for the Heisenberg
Group ................................................. 63
3.2 The General Baker-Campbell-Hausdorff Formula............ 67
3.3 The Derivative of the Exponential Mapping................. 70
3.4 Proof of the Baker-Campbell-Hausdorff Formula............ 73
3.5 The Series Form of the Baker-Campbell-Hausdorff Formula .. 74
3.6 Group Versus Lie Algebra Homomorphisms ................ 76
3.7 Covering Groups........................................ 80
3.8 Subgroups and Subalgebras............................... 82
3.9 Exercises............................................... 88
Basic Representation Theory.............................. 91
4.1 Representations......................................... 91
4.2 Why Study Representations? ............................. 94
4.3 Examples of Representations.............................. 95
4.3.1 The Standard representation........................ 95
4.3.2 The trivial representation .......................... 96
4.3.3 The adjoint representation.......................... 96
4.3.4 Some representations of SU(2)___.................. 97
4.3.5 Two unitary representations of SO(3)................ 99
4.3.6 A unitary representation of the reals.................100
Contents XI
4.3.7 The unitary representations of the Heisenberg group ... 100
4.4 The Irreducible Representations of su(2)....................101
4.5 Direct Sums of Representations ...........................106
4.6 Tensor Products of Representations........................107
4.7 Dual Representations....................................112
4.8 Schur s Lemma..........................................113
4.9 Group Versus Lie Algebra Representations..................115
4.10 Complete Reducibility ...................................118
4.11 Exercises...............................................121
Part II Semisimple Theory
5 The Representations of SU(3)..............................127
5.1 Introduction............................................127
5.2 Weights and Roots ......................................129
5.3 The Theorem of the Highest Weight.......................132
5.4 Proof of the Theorem....................................135
5.5 An Example: Highest Weight (1,1)........................140
5.6 The Weyl Group........................................142
5.7 Weight Diagrams........................................149
5.8 Exercises...............................................152
6 Semisimple Lie Algebras...................................155
6.1 Complete Reducibility and Semisimple Lie Algebras.........156
6.2 Examples of Reductive and Semisimple Lie Algebras.........161
6.3 Cartan Subalgebras......................................162
6.4 Roots and Root Spaces...................................164
6.5 Inner Products of Roots and Co-roots......................170
6.6 The Weyl Group........................................173
6.7 Root Systems...........................................180
6.8 Positive Roots ..........................................181
6.9 The sl(n;C) Case........................................182
6.9.1 The Cartan subalgebra.............................182
6.9.2 The roots........................................182
6.9.3 Inner products of roots.............................183
6.9.4 The Weyl group...................................184
6.9.5 Positive roots................. ....................184
6.10 Uniqueness Results......................................184
6.11 Exercises...............................................185
7 Representations of Complex Semisimple Lie Algebras......191
7.1 Integral and Dominant Integral Elements...................192
7.2 The Theorem of the Highest Weight.......................194
7.3 Constructing the Representations I: Verma Modules.........200
XII Contents
7.3.1 Verma modules ...................................200
7.3.2 Irreducible quotient modules........................202
7.3.3 Finite-dimensional quotient modules.................204
7.3.4 The sl(2;C) case ..................................208
7.4 Constructing the Representations II: The Peter-Weyl Theorem 209
7.4.1 The Peter-Weyl theorem...........................210
7.4.2 The Weyl character formula........................211
7.4.3 Constructing the representations....................213
7.4.4 Analytically integral versus algebraically integral
elements .........................................215
7.4.5 The SU(2) case....................................216
7.5 Constructing the Representations III: The Borel-Weil
Construction............................................218
7.5.1 The complex-group approach.......................218
7.5.2 The setup........................................220
7.5.3 The strategy......................................222
7.5.4 The construction..................................225
7.5.5 The SL(2;C) case .................................229
7.6 Further Results .........................................230
7.6.1 Duality ..........................................230
7.6.2 The weights and their multiplicities..................232
7.6.3 The Weyl character formula and the Weyl dimension
formula..........................................234
7.6.4 The analytical proof of the Weyl character formula-----236
7.7 Exercises...............................................240
8 More on Roots and Weights...............................243
8.1 Abstract Root Systems...................................243
8.2 Duality ................................................248
8.3 Bases and Weyl Chambers................................249
8.4 Integral and Dominant Integral Elements...................254
8.5 Examples in Rank Two ..................................256
8.5.1 The root Systems..................................256
8.5.2 Connection with Lie algebras.......................257
8.5.3 The Weyl groups..................................257
8.5.4 Duality..........................................258
8.5.5 Positive roots and dominant integral elements.........258
8.5.6 Weight diagrams..................................259
8.6 Examples in Rank Three.................................262
8.7 Additional Properties....................................263
8.8 The Root Systems of the Classical Lie Algebras.............265
8.8.1 The orthogonal algebras so(2n; C)...................265
8.8.2 The orthogonal algebras so(2n +1; C)................266
8.8.3 The symplectic algebras sp(n; C)....................268
8.9 Dynkin Diagrams and the Classification....................269
Contents XIII
8.10 The Root Lattice and the Weight Lattice...................273
8.11 Exercises...............................................276
A A Quick Introduction to Groups...........................279
A.l Definition of a Group and Basic Properties.................279
A.2 Examples of Groups.....................................281
A.2.1 The trivial group..................................282
A.2.2 The integers......................................282
A.2.3 The reals and Rn..................................282
A.2.4 Nonzero real numbers under multiplication...........282
A.2.5 Nonzero complex numbers under multiplication.......282
A.2.6 Complex numbers of absolute value 1 under
multiplication.....................................283
A.2.7 The general linear groups...........................283
A.2.8 Permutation group (symmetric group) ...............283
A.2.9 Integers mod n...................................283
A.3 Subgroups, the Center, and Direct Products................284
A.4 Homomorphisms and Isomorphisms........................285
A.5 Quotient Groups........................................286
A.6 Exercises...............................................289
B Linear Algebra Review....................................291
B.l Eigenvectors, Eigenvalues, and the Characteristic Polynomial . 291
B.2 Diagonalization .........................................293
B.3 Generalized Eigenvectors and the SN Decomposition.........294
B.4 The Jordan Canonical Form..............................296
B.5 The Trace..............................................296
B.6 Inner Products..........................................297
B.7 Dual Spaces............................................299
B.8 Simultaneous Diagonalization.............................299
C More on Lie Groups.......................................303
C.l Manifolds ..............................................303
C.l.l Definition........................................303
C.1.2 Tangent space ....................................304
C.l.3 Differentials of smooth mappings....................305
C.1.4 Vector fields......................................306
C.1.5 The flow along a vector field........................307
C.1.6 Submanifolds of vector Spaces.......................308
C.1.7 Complex manifolds................................309
C.2 Lie Groups............................................. 309
C.2.1 Definition........................................309
C.2.2 The Lie algebra...................................310
C.2.3 The exponential mapping...........................311
C.2.4 Homomorphisms..................................311
XIV Contents
C.2.5 Quotient groups and covering groups.................312
C.2.6 Matrix Lie groups as Lie groups.....................313
C.2.7 Complex Lie groups ...............................313
C.3 Examples of Nonmatrix Lie Groups........................314
C.4 Differential Forms and Haar Measure ......................318
D Clebsch-Gordan Theory for SU (2) and the Wigner-Eckart
Theorem ..................................................321
D.l Tensor Products of sl(2; C) Representations.................321
D.2 The Wigner-Eckart Theorem.............................324
D.3 More on Vector Operators................................328
E Computing Fundamental Groups of Matrix Lie Groups .... 331
E.l The Fundamental Group.................................331
E.2 The Universal Cover.....................................332
E.3 Fundamental Groups of Compact Lie Groups I..............333
E.4 Fundamental Groups of Compact Lie Groups II.............336
E.5 Fundamental Groups of Noncompact Lie Groups............342
References.....................................................345
Index..........................................................347
|
any_adam_object | 1 |
author | Hall, Brian C. |
author_facet | Hall, Brian C. |
author_role | aut |
author_sort | Hall, Brian C. |
author_variant | b c h bc bch |
building | Verbundindex |
bvnumber | BV019850495 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
classification_tum | MAT 173f MAT 225f |
ctrlnum | (OCoLC)249922892 (DE-599)BVBBV019850495 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Corr. 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02141nam a2200553zcb4500</leader><controlfield tag="001">BV019850495</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131009 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050620s2004 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387401229</subfield><subfield code="9">0-387-40122-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441923134</subfield><subfield code="9">978-1-4419-2313-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387215549</subfield><subfield code="9">978-0-387-21554-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249922892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019850495</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hall, Brian C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups, Lie algebras, and representations</subfield><subfield code="b">an elementary introduction</subfield><subfield code="c">Brian C. Hall</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 351 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">222</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie-Gruppe - Lie-Algebra - Darstellungstheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">222</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">222</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013175207&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013175207</subfield></datafield></record></collection> |
id | DE-604.BV019850495 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:07:33Z |
institution | BVB |
isbn | 0387401229 9781441923134 9780387215549 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013175207 |
oclc_num | 249922892 |
open_access_boolean | |
owner | DE-739 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-634 DE-11 DE-20 DE-703 DE-188 |
owner_facet | DE-739 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-634 DE-11 DE-20 DE-703 DE-188 |
physical | XIV, 351 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Hall, Brian C. Verfasser aut Lie groups, Lie algebras, and representations an elementary introduction Brian C. Hall Corr. 2. print. New York [u.a.] Springer 2004 XIV, 351 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 222 Hier auch später erschienene, unveränderte Nachdrucke Lie-Gruppe - Lie-Algebra - Darstellungstheorie Lie algebras Lie groups Representations of algebras Representations of groups Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Lie-Algebra (DE-588)4130355-6 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Graduate texts in mathematics 222 (DE-604)BV000000067 222 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013175207&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hall, Brian C. Lie groups, Lie algebras, and representations an elementary introduction Graduate texts in mathematics Lie-Gruppe - Lie-Algebra - Darstellungstheorie Lie algebras Lie groups Representations of algebras Representations of groups Lie-Algebra (DE-588)4130355-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4148816-7 (DE-588)4035695-4 |
title | Lie groups, Lie algebras, and representations an elementary introduction |
title_auth | Lie groups, Lie algebras, and representations an elementary introduction |
title_exact_search | Lie groups, Lie algebras, and representations an elementary introduction |
title_full | Lie groups, Lie algebras, and representations an elementary introduction Brian C. Hall |
title_fullStr | Lie groups, Lie algebras, and representations an elementary introduction Brian C. Hall |
title_full_unstemmed | Lie groups, Lie algebras, and representations an elementary introduction Brian C. Hall |
title_short | Lie groups, Lie algebras, and representations |
title_sort | lie groups lie algebras and representations an elementary introduction |
title_sub | an elementary introduction |
topic | Lie-Gruppe - Lie-Algebra - Darstellungstheorie Lie algebras Lie groups Representations of algebras Representations of groups Lie-Algebra (DE-588)4130355-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Lie-Gruppe - Lie-Algebra - Darstellungstheorie Lie algebras Lie groups Representations of algebras Representations of groups Lie-Algebra Darstellungstheorie Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013175207&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT hallbrianc liegroupsliealgebrasandrepresentationsanelementaryintroduction |