Supermanifolds and supergroups: basic theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer Academic Publ.
2004
|
Schriftenreihe: | Mathematics and its applications
570 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Auch als Internetausgabe |
Beschreibung: | XIII, 416 S. |
ISBN: | 1402022964 1402022972 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV019835550 | ||
003 | DE-604 | ||
005 | 20050707 | ||
007 | t | ||
008 | 050607s2004 ne |||| 00||| eng d | ||
010 | |a 2004050725 | ||
020 | |a 1402022964 |9 1-4020-2296-4 | ||
020 | |a 1402022972 |9 1-4020-2297-2 | ||
035 | |a (OCoLC)55208348 | ||
035 | |a (DE-599)BVBBV019835550 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a ne |c NL | ||
049 | |a DE-703 |a DE-355 |a DE-634 |a DE-11 | ||
050 | 0 | |a QA641 | |
082 | 0 | |a 516.3/62 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Tuynman, Gijs M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Supermanifolds and supergroups |b basic theory |c Gijs M. Tuynman |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer Academic Publ. |c 2004 | |
300 | |a XIII, 416 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematics and its applications |v 570 | |
500 | |a Auch als Internetausgabe | ||
650 | 4 | |a aGlobal differential geometry | |
650 | 4 | |a aSupermanifolds (Mathematics) | |
650 | 4 | |a aSuperalgebras | |
650 | 0 | 7 | |a Supergruppe |0 (DE-588)4308688-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Supermannigfaltigkeit |0 (DE-588)4289285-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |D s |
689 | 0 | 1 | |a Supermannigfaltigkeit |0 (DE-588)4289285-5 |D s |
689 | 0 | 2 | |a Supergruppe |0 (DE-588)4308688-3 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Mathematics and its applications |v 570 |w (DE-604)BV008163334 |9 570 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013160568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013160568 |
Datensatz im Suchindex
_version_ | 1804133343876349952 |
---|---|
adam_text | Table
Preface
I. 21-graded commutative linear algebra
1.
2.
3.
4.
5.
6.
7.
8.
II. Linear algebra of free graded
1.
2.
3.
4.
5.
6.
III. Smooth functions and
1.
2.
3.
4.
5.
vi
IV. Bundles
1.
2.
3.
4.
5.
6.
7.
8.
V. The tangent space
1.
2.
3.
4.
5.
6.
7.
8. de Rham
VI.
1.
2.
3.
4.
5.
6.
7.
8.
9.
VII.
1.
2. Ehresmann
3.
4.
5.
6.
7.
8.
9.
10.
Table
References
Index of Notation
Index
|
any_adam_object | 1 |
author | Tuynman, Gijs M. |
author_facet | Tuynman, Gijs M. |
author_role | aut |
author_sort | Tuynman, Gijs M. |
author_variant | g m t gm gmt |
building | Verbundindex |
bvnumber | BV019835550 |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 |
callnumber-search | QA641 |
callnumber-sort | QA 3641 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
ctrlnum | (OCoLC)55208348 (DE-599)BVBBV019835550 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01897nam a2200493zcb4500</leader><controlfield tag="001">BV019835550</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050707 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050607s2004 ne |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004050725</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402022964</subfield><subfield code="9">1-4020-2296-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402022972</subfield><subfield code="9">1-4020-2297-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55208348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019835550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA641</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tuynman, Gijs M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supermanifolds and supergroups</subfield><subfield code="b">basic theory</subfield><subfield code="c">Gijs M. Tuynman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Academic Publ.</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 416 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and its applications</subfield><subfield code="v">570</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aGlobal differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aSupermanifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aSuperalgebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supergruppe</subfield><subfield code="0">(DE-588)4308688-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supermannigfaltigkeit</subfield><subfield code="0">(DE-588)4289285-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Supermannigfaltigkeit</subfield><subfield code="0">(DE-588)4289285-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Supergruppe</subfield><subfield code="0">(DE-588)4308688-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and its applications</subfield><subfield code="v">570</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">570</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013160568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013160568</subfield></datafield></record></collection> |
id | DE-604.BV019835550 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T20:07:13Z |
institution | BVB |
isbn | 1402022964 1402022972 |
language | English |
lccn | 2004050725 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013160568 |
oclc_num | 55208348 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-634 DE-11 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-634 DE-11 |
physical | XIII, 416 S. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Kluwer Academic Publ. |
record_format | marc |
series | Mathematics and its applications |
series2 | Mathematics and its applications |
spelling | Tuynman, Gijs M. Verfasser aut Supermanifolds and supergroups basic theory Gijs M. Tuynman Dordrecht [u.a.] Kluwer Academic Publ. 2004 XIII, 416 S. txt rdacontent n rdamedia nc rdacarrier Mathematics and its applications 570 Auch als Internetausgabe aGlobal differential geometry aSupermanifolds (Mathematics) aSuperalgebras Supergruppe (DE-588)4308688-3 gnd rswk-swf Supermannigfaltigkeit (DE-588)4289285-5 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 s Supermannigfaltigkeit (DE-588)4289285-5 s Supergruppe (DE-588)4308688-3 s DE-604 Mathematics and its applications 570 (DE-604)BV008163334 570 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013160568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tuynman, Gijs M. Supermanifolds and supergroups basic theory Mathematics and its applications aGlobal differential geometry aSupermanifolds (Mathematics) aSuperalgebras Supergruppe (DE-588)4308688-3 gnd Supermannigfaltigkeit (DE-588)4289285-5 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd |
subject_GND | (DE-588)4308688-3 (DE-588)4289285-5 (DE-588)4021286-5 |
title | Supermanifolds and supergroups basic theory |
title_auth | Supermanifolds and supergroups basic theory |
title_exact_search | Supermanifolds and supergroups basic theory |
title_full | Supermanifolds and supergroups basic theory Gijs M. Tuynman |
title_fullStr | Supermanifolds and supergroups basic theory Gijs M. Tuynman |
title_full_unstemmed | Supermanifolds and supergroups basic theory Gijs M. Tuynman |
title_short | Supermanifolds and supergroups |
title_sort | supermanifolds and supergroups basic theory |
title_sub | basic theory |
topic | aGlobal differential geometry aSupermanifolds (Mathematics) aSuperalgebras Supergruppe (DE-588)4308688-3 gnd Supermannigfaltigkeit (DE-588)4289285-5 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd |
topic_facet | aGlobal differential geometry aSupermanifolds (Mathematics) aSuperalgebras Supergruppe Supermannigfaltigkeit Globale Differentialgeometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013160568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT tuynmangijsm supermanifoldsandsupergroupsbasictheory |