Analytical methods in anisotropic elasticity: with symbolic computational tools
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. [429]-446) and index |
Beschreibung: | xviii, 451 p. ill. 1 CD-ROM (12 cm) |
ISBN: | 0817642722 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV019833202 | ||
003 | DE-604 | ||
005 | 20090409 | ||
007 | t | ||
008 | 050606s2005 xxua||| |||| 00||| eng d | ||
010 | |a 2004054558 | ||
020 | |a 0817642722 |c alk. paper |9 0-8176-4272-2 | ||
035 | |a (OCoLC)55990361 | ||
035 | |a (DE-599)BVBBV019833202 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-706 |a DE-Aug4 | ||
050 | 0 | |a QA931 | |
082 | 0 | |a 531/.382 |2 22 | |
084 | |a UF 3000 |0 (DE-625)145570: |2 rvk | ||
100 | 1 | |a Rand, Omri |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analytical methods in anisotropic elasticity |b with symbolic computational tools |c Omri Rand, Vladimir Rovenski |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2005 | |
300 | |a xviii, 451 p. |b ill. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. [429]-446) and index | ||
650 | 7 | |a Elasticidade |2 larpcal | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Elasticity | |
650 | 4 | |a Anisotropy | |
650 | 4 | |a Anisotropy |x Mathematical models | |
650 | 4 | |a Inhomogeneous materials | |
650 | 0 | 7 | |a Inhomogener Festkörper |0 (DE-588)4225741-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anisotroper Stoff |0 (DE-588)4280461-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizität |0 (DE-588)4014159-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anisotropie |0 (DE-588)4002073-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elastizität |0 (DE-588)4014159-7 |D s |
689 | 0 | 1 | |a Anisotropie |0 (DE-588)4002073-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Elastizität |0 (DE-588)4014159-7 |D s |
689 | 1 | 1 | |a Anisotroper Stoff |0 (DE-588)4280461-9 |D s |
689 | 1 | 2 | |a Inhomogener Festkörper |0 (DE-588)4225741-4 |D s |
689 | 1 | 3 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |D s |
689 | 2 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 2 | 2 | |a Anisotroper Stoff |0 (DE-588)4280461-9 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Rovenski, Vladimir |d 1953- |e Verfasser |0 (DE-588)12012985X |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013158248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013158248 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804133340362571776 |
---|---|
adam_text | x
Preface
General
Style Clarification Notes:
Contents
Preface
vii
1
Fundamentals of
Anisotropie
Elasticity and Analytical Methodologies
1
1.1
Deformation Measures and Strain
........................ 1
1.1.1
Displacements in Cartesian Coordinates
................. 2
1.1.2
Strain in Cartesian Coordinates
..................... 3
1.1.3
Strain in Orthogonal Curvilinear Coordinates
.............. 6
1.1.4
Physical Interpretation of Strain Components
.............. 7
1.2
Displacement by Strain Integration
........................ 9
1.2.1
Compatibility Equations
......................... 9
1.2.2
Continuous Approach
.......................... 11
1.2.3
Level Approach
.............................. 12
1.3
Stress Measures
.................................. 14
1.3.1
Definition of Stress
............................ 15
1.3.2
Equilibrium Equations
.......................... 17
1.3.3
Stress Tensor Transformation due to Coordinate System Rotation
... 19
1.3.4
Strain Tensor Transformation due to Coordinate System Rotation
... 28
1.4
Energy Theorems
................................. 28
1.4.1
The Theorem of Minimum Potential Energy
............... 28
1.4.2
The Theorem of Minimum Complementary Energy
........... 29
1.4.3
Theorem of Reciprocity
......................... 30
1.4.4
Castigliano s Theorems
.......................... 31
1.5
Euler s Equations
................................. 31
1.5.1
Functional Based on Functions of One Variable
............. 32
1.5.2
Variational Problems with Constraints
.................. 34
1.5.3
Functional Based on Function of Several Variables
........... 36
1.6
Analytical Methodologies
............................. 38
1.6.1
The Fundamental Problems of Elasticity
................. 39
1.6.2
Fundamental Ingredients of Analytical Solutions
............ 39
xii Contents
1.6.3 St.
Venanťs
Semi-Inverse Method of Solution
..............
41
1.6.4
Variational Analysis of Energy Based Functionals
............41
1.6.5
Typical Solution Trails
..........................
1.7
Appendix: Coordinate Systems
..........................
1.7.1
Transformation Between Coordinate Systems
..............
47
1.7.2
Curvilinear Coordinate Systems
.....................49
2 Anisotropie
Materials
2.1
The Generalized Hook s Law
...........................
54
2.2
General
Anisotropie
Materials
..........................
2.3
Monoclinic Materials
...............................
2.4
Orthotropic Materials
...............................
56
2.5
Tetragonal Materials
...............................
2.6
Transversely
Isotropie
(Hexagonal) Materials
.................. 59
2.7
Cubic Materials
.................................. 61
2.8 Isotropie
Materials
................................ 61
2.9
Engineering Notation of Composites
....................... 62
2.10
Positive-Definite Stress-Strain Law
........................ 63
2.11
Typical Material Characteristics
......................... 65
2.12
Compliance Matrix Transformation
....................... 66
2.13
Stiffness Matrix Transformation
......................... 69
2.14
Compliance and Stiffness Matrix Transformation to Curvilinear Coordinates
. . 70
2.15
Principal Directions of Anisotropy
........................ 70
2.16
Planes of Elastic Symmetry
............................ 74
2.17
Non-Cartesian Anisotropy
............................ 76
3
Plane Deformation Analysis
79
3.1
Plane Domain Definition and Contour Parametrization
.............80
3.1.1
Plane Domain Topology
......................... 80
3.1.2
Contour Parametrization and Directional Cosines
............ 81
3.1.3
Parametrization by
Conformai
Mapping
.................83
3.1.4
Parametrization by Piecewise Linear Functions
............. 85
3.2
Plane-Strain and Plane-Stress
...........................86
3.2.1
Plane-Strain
................................87
3.2.2
Plane-Stress
................................90
3.2.3
Illustrative Examples of Prescribed Airy s Function
...........92
3.2.4
The Influence of Body Forces
......................93
3.2.5
Boundary and Single-Value Conditions
.................94
3.2.6
Plane Stress/Strain Analysis in a Non-Homogeneous Domain
.....100
3.3
Plane-Shear
................ 200
3.3.1
Analysis by Stress Function
.......................101
3.3.2
Analysis by Warping Function
......................104
3.3.3
Generic Dirichlet/Neumann BVPs on a Homogeneous Domain
.....105
3.3.4
Simplification of Generalized Laplace s and Boundary Operators.
... 107
3.3.5
Plane-Shear Analysis of Non-Homogeneous Domain
108
3.4
Coupled-Plane BVP
............... ......
.qş
3.5
Analysis of Plates
..............................
]0
3.5.1
The Classical Laminated Plate Theory
.......... .......
HO
3.5.2
Bending of
Anisotropie
Plates
. .............
117
3.6
Appendix: Differential Operators
. . ...................
j
20
Contents xiii
3.6.1
Generalized Laplace s
Operators.....................120
3.6.2
Biharmonic Operators
..........................121
3.6.3
Third-Order and Sixth-Order Differential Operators
...........123
3.6.4
Generalized Normal Derivative Operators
................123
3.6.5
Ellipticity of the Differential Operators
.................124
4
Solution Methodologies
125
4.1
Unified Formulation of Two-Dimensional
В
VPs
.................126
4.2
Particular Polynomial Solutions
.........................128
4.2.1
The Biharmonic BVP
...........................129
4.2.2
The Dirichlet/Neumann BVPs
......................130
4.2.3
The Coupled-Plane BVP
.........................131
4.3
Homogeneous BVPs Polynomial Solutions
...................132
4.3.1
Prescribing the Boundary Functions
...................133
4.3.2
Prescribing the Field Equations
.....................134
4.3.3
Exact and Conditional Polynomial Solutions
..............135
4.3.4
Approximate Polynomial Solutions
...................141
4.4
The Method of Complex Potentials
........................149
4.4.1
n-Coupled Dirichlet BVP
.........................150
4.4.2
Application of Complex Potentials to the Dirichlet BVP
........152
4.4.3
Application of Complex Potentials to the Biharmonic
В
VP.......
157
4.4.4
Application of Complex Potentials to a Coupled-Plane
В
VP
......159
4.4.5
Fourier Series Based Solution of a Coupled-Plane BVP
.........161
4.5
Three-Dimensional Prescribed Solutions
.....................169
4.5.1
Equilibrium Equations in Terms of Displacements
...........169
4.5.2
Fourier Series Based Solutions in an
Isotropie
Parallelepiped
......171
4.5.3
Direct Solution in Terms of Displacements for Three-Dimensional Bod¬
ies
.....................................173
4.6
Closed Form Solutions in Circular and Annular
Isotropie
Domains
.......177
4.6.1
Harmonic and Biharmonic Functions in Polar Coordinates
.......177
4.6.2
The Dirichlet BVP in a Circle
......................178
4.6.3
The Neumann BVP in a Circle
......................178
4.6.4
The Dirichlet BVP in a Circular Ring
..................179
4.6.5
The Neumann BVP in a Circular Ring
..................179
4.6.6
The Biharmonic BVP in a Circle
.....................180
4.6.7
The Biharmonic BVP in a Circular Ring
.................181
5
Foundations of
Anisotropie
Beam Analysis
183
5.1
Notation and Definitions
.............................184
5.1.1
Geometrical Degrees of Freedom
....................184
5.1.2
Tip and Distributed Loading
.......................187
5.1.3
Boundary Conditions
...........................188
5.2
Elastic Coupling in General
Anisotropie
Beams
.................192
5.2.1
Coupling at the Material Level
......................192
5.2.2
Coupling at the Structural Level
.....................193
5.3
Simplified Beam Models
.............................198
5.3.1
Beam-Plate Models
............................199
5.3.2
Analysis by Cross-Section Stiffness Matrix
...............205
5.3.3
The Influence of the In-Plane Deformation
...............207
5.3.4 Strength-of-Materials Isotropie
Beam Analysis
............211
xiv Contents
......212
5.4
Literature
.............................
6
Beams of General Anisotropy
^15
6.1
Stress and Strain
.................................
6.1.1
Stress Resultants
.............................
21/
6.1.2
Compatibility Conditions
.........................
219
6.1.3
Axial Strain Integration
..........................220
6 1.4
Stress Functions and the Coupled-Plane
В
VP..............
221
994.
6.2
Displacements and Rotations
...........................
ZZ4
6.2.1
Continuous Expressions
.........................225
6.2.2
Level Expressions
............................226
6.2.3
Axis Deformation
.............................227
6.2.4
Root Warping Integration
.........................229
6.3
Recurrence Solution Scheme
...........................230
6.3.1
Solution Steps
..............................230
6.3.2
Expressions for the High Solution Levels
................232
6.4
Applications
....................................234
6.4.1
Tip Moments and Axial Force
......................234
6.4.2
Tip Bending Forces
............................238
6.4.3
Axially Uniform Distributed Loading
..................242
6.4.4
Additional Examples
...........................245
6.5
Appendix: Integral Identities
...........................246
7
Homogeneous, Uncoupled Monoclinic Beams
249
7.1
Background
....................................250
7.2
Tip Loads
.....................................250
7.2.1
Torsionai
Moment
............................251
7.2.2
Tip Bending Forces
............................259
7.2.3
Summarizing the Tip Loading Effects
..................263
7.3
Axially Distributed Loads
.............................265
7.3.1
Solution Methodology
..........................265
7.3.2
Solution Hypothesis
...........................266
7.3.3
The Harmonic Stress Functions
.....................267
7.3.4
The Biharmonic and Longitudinal Stress Functions
...........268
7.3.5
Verification of Solution Hypothesis
...................268
7.3.6
Solution Procedure
............................269
7.3.7
Detailed Solution Expressions
......................270
7.4
Applications
......................... 275
7.5
Beams of Cylindrical Anisotropy
.........................281
7.5.1
Geometrical Aspects
........................ 283
7.5.2
Torsion of a Beam of Cylindrical Anisotropy
..............284
7.5.3
Extension and Bending of a Beam of Cylindrical Anisotropy
......285
8
Non-Homogeneous Plane and Beam Analysis
297
8.1
Plane (Two-Dimensional) BVPs
............... 298
8.1.1
The Neumann BVP
....... ..........
20й
8.1.2
TheDirichletBVP
............................299
8.1.3
The Biharmonic BVP
.......
-,,™
8.1.4
Coupled-Plane BVP
. . . . . . . . ..[]...............302
8.1.5
n-CoupledDirichletBVP
.........................
302
Contents xv
8.2
Uncoupled Beams Under Tip Loads
.......................304
8.2.1
General Aspects and
Interlaminar
Conditions
..............304
8.2.2
The Auxiliary Problems of Plane Deformation
.............305
8.2.3
Tip Axial Force
..............................308
8.2.4
Tip Bending Moments
..........................310
8.2.5
Tip Bending Forces
............................311
8.2.6
Torsionai
Moment
............................314
8.2.7
Summarizing the Tip Loading Effects
..................319
8.2.8
Fulfilling the Tip Conditions
.......................321
8.2.9
Principal Axis of Extension and Principal Planes of Bending
......322
8.2.10
Shear Center
...............................323
8.2.11
Solution Procedure
............................323
8.3
Uncoupled Beam Under Axially Distributed Loads
...............324
8.3.1
The Solution Hypothesis
.........................324
8.3.2
The Strain Components
.........................325
8.3.3
Displacements and Rotations
.......................326
8.3.4
The Biharmonic Stress Functions
....................326
8.3.5
The Harmonic and Longitudinal Stress Functions
............326
8.3.6
The Auxiliary Functions
.........................327
8.3.7
The Loading Constants
..........................327
8.3.8
Verification of Solution Hypothesis
...................328
8.3.9
Solution Procedure
............................329
8.4
Applications
....................................329
9
Solid Coupled Monoclinic Beams
335
9.1
Background
....................................335
9.1.1
Cross-Section Warping
..........................335
9.1.2
Approximate Analytical Solutions
....................336
9.1.3
Coupling Effects in Symmetric and Antisymmetric Solid Beams
. . . .336
9.2
An Approximate Analytical Model
........................338
9.2.1
Reduced Stress-Strain Relationships
...................339
9.2.2
Equilibrium Equations
..........................341
9.2.3
Analytical Solutions
...........................344
9.3
An Exact Multilevel Approach
..........................353
9.3.1
Displacements and Stress-Strain Relationships
.............354
9.3.2
Definition of Solution Levels
.......................355
9.3.3
Examples
.................................361
10
Thin-Walled Coupled Monoclinic Beams
369
10.1
Background
....................................369
10.2
Multiply Connected Domain
...........................370
10.2.1
The Elastic Coupling Effects
.......................370
10.2.2
An Approximate Analytical Model
...................371
10.3
Simply Connected Domain
............................380
10.3.1
The Transverse and Axial Loads Effect
.................381
10.3.2
The
Torsionai
Moment Effect
......................389
11
Program Descriptions
401
P.I Programs for Chapter
1..............................402
P.
1.1
Strain Tensor in Space
..........................402
xvi Contents
402
P.
1.2
Strain
Tensor in
the
Plane ........................
P.I.
3
Compatibility Equations in Space
....................
P.
1.4
Compatibility Equations in the Plane
..................4Ü
P.
1.5
Displacements by Strain Integration in Space
..............403
P.
1.6
Displacements by Strain Integration in the Plane
............
403
P.I.
7
Equilibrium Equations in Space
.....................
403
P.
1.8
Equilibrium Equations in the Plane
...................
404
P.
1.9
Stress/Strain Tensor Transformation due to Coordinate System Rotation
404
P.I.
10
Application of Stress/Strain Tensor Transformation
...........404
P.
1.11
Stress/Strain Tensor Transformations from Cartesian to Curvilinear
Coordinates
................................
404
P.I.
12
Stress/Strain Visualization
........................405
P.
1.13
Euler s Equation for a Functional Based on a Function of One or Two
Variables
.................................405
P.I.
14
Elastica
..................................405
P.I.
15
Rotation Matrix in Space
.........................405
P.I.
16
Curvilinear Coordinates in Space
....................405
P.I.
17
Curvilinear Coordinates in the Plane
...................406
P.2 Programs for Chapter
2..............................406
P.2.
1
Compliance and Stiffness Matrices Presentation
.............406
P.2.2 Material Data by Compliance Matrix
..................406
P.2.3 Material Data by Stiffness Matrix
....................407
P.2.
4
Compliance Matrix Positiveness
.....................407
P.2.
5
Generic Compliance Matrix Transformation due to Coordinate System
Rotation
..................................407
P.2.
6
Application of the Compliance Matrix Transformation
.........407
P.2.
7
Compliance Matrix Transformation due to Coordinate System Rotation
407
P.2.
8
Visualization of a Compliance Matrix Transformation
.........408
P.2.9 Generic Stiffness Matrix Transformation due to Coordinate System
Rotation
..................................408
P.2.
10
Stiffness Matrix Transformation due to Coordinate System Rotation
. .408
P.2.
11
Application of the Stiffness Matrix Transformation
...........408
P.2.
12
Compliance Matrix Transformation from Cartesian to Curvilinear Co¬
ordinates
.................................408
P.2.
13
Principal Directions of Anisotropy
....................409
P.3 Programs for Chapter
3..............................409
P.3.1 Illustrative Parametrizations
.......................409
P.3.2 Regular Polygon Parametrization Using the Schwarz-Christoffel Integral
409
P.3.3 Generic Polygon Parametrization Using the Schwarz-Christoffel Integral
410
P.3.
4
Fourier Series Parametrization of a Polygon
...............410
P.3.5 Prescribed Polynomial Solution of the Biharmonic Equation
......410
P.3.6 Application of Prescribed Polynomial Solution of the Biharmonic Equ¬
ation
...................................
411
P.3.
7
Prescribed Polynomial Solution of Laplace s Equation
.........411
P.3.8 Application of Prescribed Polynomial Solution of Laplace s Equation
і
411
P.3.9
Affine
Transformation
................
412
P.3.10 Prescribed Polynomial Solution of Coupled-Plane Equations
......412
P.3.
11
Application of Prescribed Polynomial Solution of Coupled-Plane Equa¬
tions
......................
ľ
H
P.3.
12
Ellipticity of the Differential Operators
.................412
Contents xvii
P.4
Programs for Chapter
4..............................413
P.4.
1
Particular Polynomial Solution of the Biharmonic Equation in an
Ellipse
..................................413
P.4.
2
Particular Polynomial Solution of the Biharmonic Equation
......414
P.4.3 Particular Polynomial Solution of Poisson s Equation
..........414
P.4.4 Particular Polynomial Solution of Poisson s Equation in an Ellipse
. . . 414
P.4.5 Particular Polynomial Solution of Coupled-Plane Equations
......415
P.4.
6
Particular Polynomial Solution of Coupled-Plane Equations in an
Ellipse
..................................415
P.4.
7
Prescribed Polynomial Boundary Functions
...............415
P.4.
8
Exact/Conditional Polynomial Solution of Dirichlet/Neumann Homo¬
geneous BVPs
..............................416
P.4.9 Symbolic Verification of the Neumann BVP Solution
..........416
P.4.
10
Exact/Conditional Polynomial Solution of Homogeneous Biharmonic
BVPs
...................................416
P.4.
11
Symbolic Verification of the Biharmonic
В
VP
Solution
.........417
P.4.
12
Exact/Conditional Polynomial Solution of Homogeneous Coupled-Plane
BVPs
...................................417
P.4.
13
Approximate Polynomial Solution of Homogeneous Dirichlet/Neumann
BVPs
...................................417
P.4.
14
Approximate Polynomial Solution of Homogeneous Biharmonic BVPs
418
P.4.
15
Approximate Polynomial Solution of Homogeneous Coupled-Plane
BVPs
...................................419
P.4.16 Rotating Plate: Application of the Biharmonic BVP Solution
......419
P.4.
17
Bending of Thin Plates: Application of the Biharmonic BVP Solution
. 419
P.4.
18
Approximate Polynomial Solution of Homogeneous «-Coupled Dirich¬
let BVPs
.................................420
P.4.
19
Fourier Series Solution of Homogeneous Dirichlet BVPs in a Rectangle
420
P.4.
20
Fourier Series Solution of Homogeneous Coupled-Plane BVPs in a
Rectangle
.................................421
P.4.
21
Equilibrium Equations in Terms of Displacements
...........421
P.4.
22
Prescribed Solutions in an
Isotropie
Parallelepiped
...........421
P.4.23 Fourier Series Solution of the Dirichlet/Neumann BVPs in an
Isotropie
Circle
...................................422
P.4.24 Fourier Series Solution of the Dirichlet/Neumann BVPs in an
Isotropie
Circular Ring
...............................422
P.4.
25
Fourier Series Solution of the Biharmonic BVP in an
Isotropie
Circle
. 422
P.4.26 Fourier Series Solution of the Biharmonic BVP in an
Isotropie
Circular
Ring
....................................423
P.5 Programs for Chapter
5..............................423
P.5.1 Elementary Strength-of-Materials
Isotropie
Beam Analysis
.....423
P.6 Programs for Chapter
6..............................423
P.6.1 An
Anisotropie
Beam of Elliptical Cross-Section
............423
P.7 Programs for Chapter
7..............................424
P.7.1 Tip Loads Effect in a Monoclinic Beam
.................424
P.7.
2
Auxiliary Harmonic Functions for Elliptical Monoclinic Cross-Sections
424
P.7.3 A Monoclinic Beam Under Axially Non-Uniform Distributed Loads (I)
424
P.7.4 A Monoclinic Beam Under Axially Non-Uniform Distributed Loads (II)
425
P.7.5 Solution for an Elliptical Monoclinic Beam Under Constant Longitu¬
dinal Loading
...............................425
xviii Contents
P.7.6
Solution
Implementation
for an Elliptical Monoclinic Beam
Under
Con¬
stant Longitudinal Loading
........................425
P.8 Programs for Chapter
8..............................425
P.8.1 Auxiliary Harmonic Functions in a Non-Homogeneous Rectangle
. . .425
P.8.2 Plane Deformation and the Auxiliary Biharmonic Problems
......426
P.8.3 Fourier Series Based Torsion Function in a Non-Homogeneous Or-
thotropic Rectangle
............................426
P.8.4 A Non-Homogeneous Monoclinic Beam Under Tip Loads
.......426
P.8.
5
A Non-Homogeneous Beam of Rectangular Cross-Section Under Tip
Loads
...................................427
P.8.6 A Monoclinic Non-Homogeneous Beam Under Axially Distributed
Non-Uniform Loads (I)
..........................427
P.8.7 A Monoclinic Non-Homogeneous Beam Under Axially Distributed
Non-Uniform Loads (II)
.........................427
References
429
Index
447
|
any_adam_object | 1 |
author | Rand, Omri Rovenski, Vladimir 1953- |
author_GND | (DE-588)12012985X |
author_facet | Rand, Omri Rovenski, Vladimir 1953- |
author_role | aut aut |
author_sort | Rand, Omri |
author_variant | o r or v r vr |
building | Verbundindex |
bvnumber | BV019833202 |
callnumber-first | Q - Science |
callnumber-label | QA931 |
callnumber-raw | QA931 |
callnumber-search | QA931 |
callnumber-sort | QA 3931 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 3000 |
ctrlnum | (OCoLC)55990361 (DE-599)BVBBV019833202 |
dewey-full | 531/.382 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.382 |
dewey-search | 531/.382 |
dewey-sort | 3531 3382 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02740nam a2200661zc 4500</leader><controlfield tag="001">BV019833202</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090409 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050606s2005 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004054558</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817642722</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8176-4272-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55990361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019833202</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA931</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.382</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3000</subfield><subfield code="0">(DE-625)145570:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rand, Omri</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical methods in anisotropic elasticity</subfield><subfield code="b">with symbolic computational tools</subfield><subfield code="c">Omri Rand, Vladimir Rovenski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 451 p.</subfield><subfield code="b">ill.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [429]-446) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elasticidade</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropy</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogeneous materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inhomogener Festkörper</subfield><subfield code="0">(DE-588)4225741-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anisotroper Stoff</subfield><subfield code="0">(DE-588)4280461-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anisotropie</subfield><subfield code="0">(DE-588)4002073-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anisotropie</subfield><subfield code="0">(DE-588)4002073-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Anisotroper Stoff</subfield><subfield code="0">(DE-588)4280461-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Inhomogener Festkörper</subfield><subfield code="0">(DE-588)4225741-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Anisotroper Stoff</subfield><subfield code="0">(DE-588)4280461-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rovenski, Vladimir</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12012985X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013158248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013158248</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV019833202 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:07:10Z |
institution | BVB |
isbn | 0817642722 |
language | English |
lccn | 2004054558 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013158248 |
oclc_num | 55990361 |
open_access_boolean | |
owner | DE-703 DE-706 DE-Aug4 |
owner_facet | DE-703 DE-706 DE-Aug4 |
physical | xviii, 451 p. ill. 1 CD-ROM (12 cm) |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Birkhäuser |
record_format | marc |
spelling | Rand, Omri Verfasser aut Analytical methods in anisotropic elasticity with symbolic computational tools Omri Rand, Vladimir Rovenski Boston [u.a.] Birkhäuser 2005 xviii, 451 p. ill. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. [429]-446) and index Elasticidade larpcal Mathematisches Modell Elasticity Anisotropy Anisotropy Mathematical models Inhomogeneous materials Inhomogener Festkörper (DE-588)4225741-4 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 gnd rswk-swf Anisotroper Stoff (DE-588)4280461-9 gnd rswk-swf Elastizität (DE-588)4014159-7 gnd rswk-swf Anisotropie (DE-588)4002073-3 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Elastizität (DE-588)4014159-7 s Anisotropie (DE-588)4002073-3 s DE-604 Anisotroper Stoff (DE-588)4280461-9 s Inhomogener Festkörper (DE-588)4225741-4 s Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Elastizitätstheorie (DE-588)4123124-7 s 2\p DE-604 Rovenski, Vladimir 1953- Verfasser (DE-588)12012985X aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013158248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rand, Omri Rovenski, Vladimir 1953- Analytical methods in anisotropic elasticity with symbolic computational tools Elasticidade larpcal Mathematisches Modell Elasticity Anisotropy Anisotropy Mathematical models Inhomogeneous materials Inhomogener Festkörper (DE-588)4225741-4 gnd Elastizitätstheorie (DE-588)4123124-7 gnd Anisotroper Stoff (DE-588)4280461-9 gnd Elastizität (DE-588)4014159-7 gnd Anisotropie (DE-588)4002073-3 gnd Mathematische Methode (DE-588)4155620-3 gnd |
subject_GND | (DE-588)4225741-4 (DE-588)4123124-7 (DE-588)4280461-9 (DE-588)4014159-7 (DE-588)4002073-3 (DE-588)4155620-3 |
title | Analytical methods in anisotropic elasticity with symbolic computational tools |
title_auth | Analytical methods in anisotropic elasticity with symbolic computational tools |
title_exact_search | Analytical methods in anisotropic elasticity with symbolic computational tools |
title_full | Analytical methods in anisotropic elasticity with symbolic computational tools Omri Rand, Vladimir Rovenski |
title_fullStr | Analytical methods in anisotropic elasticity with symbolic computational tools Omri Rand, Vladimir Rovenski |
title_full_unstemmed | Analytical methods in anisotropic elasticity with symbolic computational tools Omri Rand, Vladimir Rovenski |
title_short | Analytical methods in anisotropic elasticity |
title_sort | analytical methods in anisotropic elasticity with symbolic computational tools |
title_sub | with symbolic computational tools |
topic | Elasticidade larpcal Mathematisches Modell Elasticity Anisotropy Anisotropy Mathematical models Inhomogeneous materials Inhomogener Festkörper (DE-588)4225741-4 gnd Elastizitätstheorie (DE-588)4123124-7 gnd Anisotroper Stoff (DE-588)4280461-9 gnd Elastizität (DE-588)4014159-7 gnd Anisotropie (DE-588)4002073-3 gnd Mathematische Methode (DE-588)4155620-3 gnd |
topic_facet | Elasticidade Mathematisches Modell Elasticity Anisotropy Anisotropy Mathematical models Inhomogeneous materials Inhomogener Festkörper Elastizitätstheorie Anisotroper Stoff Elastizität Anisotropie Mathematische Methode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013158248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT randomri analyticalmethodsinanisotropicelasticitywithsymboliccomputationaltools AT rovenskivladimir analyticalmethodsinanisotropicelasticitywithsymboliccomputationaltools |