Interacting stochastic systems:
Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York
Springer
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity. |
Beschreibung: | Literaturangaben Auch als Internetausgabe |
Beschreibung: | XI, 450 Seiten Diagramme |
ISBN: | 3540230335 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019821299 | ||
003 | DE-604 | ||
005 | 20231219 | ||
007 | t | ||
008 | 050524s2005 gw |||| |||| 00||| eng d | ||
015 | |a 04,N37,0567 |2 dnb | ||
015 | |a 05,A15,0987 |2 dnb | ||
016 | 7 | |a 972000488 |2 DE-101 | |
020 | |a 3540230335 |c Pp. : EUR 96.25 (freier Pr.), ca. sfr 135.50 (freier Pr.) |9 3-540-23033-5 | ||
024 | 3 | |a 9783540230335 | |
028 | 5 | 2 | |a 10971925 |
035 | |a (OCoLC)56697031 | ||
035 | |a (DE-599)BVBBV019821299 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-91G |a DE-634 |a DE-11 |a DE-83 | ||
050 | 0 | |a QA274.2 | |
082 | 0 | |a 519.23 |2 22 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 92-06 |2 msc/2000 | ||
084 | |a 82-06 |2 msc/2000 | ||
084 | |a 510 |2 sdnb | ||
084 | |a 60-06 |2 msc/2000 | ||
084 | |a PHY 050f |2 stub | ||
084 | |a MAT 606f |2 stub | ||
245 | 1 | 0 | |a Interacting stochastic systems |c Jean-Dominique Deuschel ; Andreas Greven (Eds.) |
264 | 1 | |a Berlin ; Heidelberg ; New York |b Springer |c 2005 | |
300 | |a XI, 450 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
500 | |a Auch als Internetausgabe | ||
520 | 3 | |a Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity. | |
650 | 7 | |a Mathematische fysica |2 gtt | |
650 | 7 | |a Stochastische analyse |2 gtt | |
650 | 7 | |a Stochastische processen |2 gtt | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Stochastic analysis | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexes System |0 (DE-588)4114261-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Komplexes System |0 (DE-588)4114261-5 |D s |
689 | 1 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Deuschel, Jean-Dominique |d 1957- |0 (DE-588)129802956 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-27110-9 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013146563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013146563 |
Datensatz im Suchindex
_version_ | 1804133324020514816 |
---|---|
adam_text | JEAN-DOMINIQUE DEUSCHEL
ANDREAS GREVEN (EDS.)
INTERACTIN
G
STOCHASTIC SYSTEMS
WITH 17 FIGURES
SPRI
NNGE
R
TABL
E OF CONTENT
S
INTRODUCTIO
N
JEAN-DOMINIQUE DEUSCHEL, ANDREAS GREVEN
REFERENCES 8
PAR
T I STOCHASTI
C METHOD
S I
N STATISTICA
L PHYSIC
S
COARSE-GRAININ
G TECHNIQUE
S FOR (RANDOM
) KA
C MODEL
S
ANTON BOVIER, CHRISTOF KUELSKE
1 INTRODUCTIO
N 11
2 TRANSLATION-INVARIAN
T LONG-RANG
E MODELS 14
2.1 L/7-CONTOU
R MODEL REPRESENTATIO
N 14
3 RANDO
M SHOR
T RANG
E MODELS AN
D COARSE-GRAINING
S 18
3.1 TH
E RANDO
M FIELD ISING MODEL 18
3.2 TH
E CONTINUOU
S SPIN RANDO
M FIELD MODEL 21
4 TH
E RANDO
M FIELD KA
C ISING MODEL 23
4.1 L/7-CONTOU
R MODEL REPRESENTATIO
N 24
4.2 LI?-BLOCKING 25
REFERENCES 26
EUCLIDEA
N GIBB
S MEASURE
S O
F QUANTU
M CRYSTALS
:
EXISTENCE
, UNIQUENES
S AN
D A PRIOR
I ESTIMATE
S
SERGIO ALBEVERIO, YURI KONDRATIEV, TATIANA PASUREK, MICHAEL ROECKNER
1 INTRODUCTIO
N 29
2 A SIMPLE MODEL OF QUANTU
M ANHARMONI
C CRYSTA
L 31
3 DEFINITION OF EUCLIDEA
N GIBB
S MEASURE
S 35
4 FORMULATIO
N OF TH
E MAI
N RESULT
S 38
4.1 EXISTENCE
, UNIQUENESS AN
D A PRIOR
I ESTIMATE
S FOR EUCLIDEA
N
GIBB
S MEASURES 39
4.2 FLOW AN
D INTEGRATIO
N BY PART
S CHARACTERIZATIO
N OF EUCLIDEA
N
GIBB
S MEASURE
S 41
5 POSSIBLE GENERALIZATION
S OF QLS MODEL I 43
6 COMMENT
S ON THEOREM
S 1-6 46
REFERENCES 51
VI TABLE OF CONTENTS
SOM
E JUM
P PROCESSE
S I
N QUANTU
M FIEL
D THEOR
Y
RODERICH TUMULKA, HANS-OTTO GEORGII
1 INTRODUCTIO
N 55
2 JUM
P RATE
S INDUCE
D BY SCHROEDINGER EQUATION
S 57
3 BOHMIA
N MECHANICS AN
D BELL-TYP
E QF
T 60
4 GLOBAL EXISTENC
E OF BELL S JUM
P PROCES
S 63
5 OTHE
R GLOBA
L EXISTENC
E QUESTION
S 66
6 DETERMINISTI
C JUMP
S AN
D BOUNDARIE
S IN CONFIGURATION SPACE 68
REFERENCES 71
GIBB
S MEASURE
S O
N BROWNIA
N PATHS
:
THEOR
Y AN
D APPLICATION
S
VOLKER BETZ, JOZSEF LOERINCZI, HERBERT SPOHN
1 INTRODUCTIO
N 75
2 GIBB
S MEASURE
S 78
2.1 TH
E CASE OF EXTERNA
L POTENTIA
L 78
2.2 WEAK PAI
R POTENTIAL
: CLUSTE
R EXPANSIO
N 81
2.3 EXISTENC
E FOR PAI
R POTENTIA
L OF ARBITRAR
Y STRENGT
H 88
2.4 PHAS
E TRANSITIO
N 91
3 A CENTRA
L LIMIT THEORE
M 92
4 APPLICATION
S AN
D OPE
N PROBLEM
S 96
REFERENCES 100
SPECTRA
L THEOR
Y FOR NONSTATIONAR
Y RANDO
M POTENTIAL
S
STEFAN BOECKER, WERNER KIRSCH, PETER STOLLMANN
1 INTRODUCTION
: LEAVING STATIONARIT
Y 103
2 SPARSE RANDO
M POTENTIAL
S 104
3 SPARSE RANDO
M POTENTIAL
S
AN
D TH
E INTEGRATE
D DENSIT
Y OF STATE
S 108
4 RANDO
M SURFACE MODELS 109
5 TH
E DENSITY OF SURFACE STATE
S 111
6 LIFSHITZ TAILS & LOCALIZATION 112
REFERENCES 112
A SURVE
Y O
F RIGOROU
S RESULT
S O
N RANDO
M SCHROEDINGE
R
OPERATOR
S FOR AMORPHOU
S SOLID
S
HAJO LESCHKE, PETER MUELLER, SIMONE WARZEL
1 INTRODUCTIO
N 120
1.1 MOTIVATIO
N AN
D MODELS 120
1.2 INTERESTIN
G QUANTITIE
S AN
D BASIC QUESTION
S 123
1.3 RANDO
M LANDA
U HAMILTONIA
N AN
D IT
S SINGLE-BAND
APPROXIMATIO
N 127
2 SELF-AVERAGING AN
D UNIQUENESS
OF TH
E INTEGRATE
D DENSIT
Y OF STATE
S 130
3 RESULT
S IN CASE OF GAUSSIA
N RANDO
M POTENTIAL
S 132
TABLE OF CONTENTS VII
3.1 LIFSHITS TAILS 132
3.2 EXISTENC
E OF TH
E DENSIT
Y OF STATE
S 133
3.3 SPECTRA
L AN
D DYNAMICA
L LOCALIZATIO
N 136
4 RESULT
S IN CASE OF POISSONIAN RANDO
M POTENTIAL
S 138
4.1 LIFSHITS TAILS 138
4.2 EXISTENC
E OF TH
E DENSIT
Y OF STATE
S AN
D SPECTRA
L LOCALIZATION.
. 142
5 SOME OPE
N PROBLEM
S 143
REFERENCES 144
TH
E PARABOLI
C ANDERSO
N MODE
L
JUERGEN GAERTNER, WOLFGANG KOENIG
1 INTRODUCTIO
N AN
D HEURISTIC
S 153
1.1 EVOLUTIO
N OF SPATIALL
Y DISTRIBUTE
D SYSTEM
S IN RANDO
M MEDI
A 153
1.2 TH
E PAM WIT
H TIME-INDEPENDEN
T POTENTIA
L 154
1.3 INTERMITTENC
Y 157
1.4 ANNEALE
D SECOND ORDE
R ASYMPTOTIC
S 159
1.5 QUENCHED SECOND ORDE
R ASYMPTOTIC
S 161
1.6 GEOMETRI
E PICTUR
E OF INTERMITTENC
Y 163
2 EXAMPLE
S OF POTENTIAL
S 163
2.1 DOUBLE-EXPONENTIA
L DISTRIBUTION
S 163
2.2 SURVIVAL PROBABILITIE
S 164
2.3 GENERA
L FIELD
S BOUNDE
D FROM ABOVE 165
2.4 GAUSSIA
N FIELDS AN
D POISSON SHOT NOISE 166
3 RESULT
S FOR TH
E DOUBLE-EXPONENTIA
L CASE 166
3.1 ANNEALE
D ASYMPTOTIC
S 167
3.2 QUENCHED ASYMPTOTIC
S 168
3.3 GEOMETR
Y OF INTERMITTENC
Y 170
4 UNIVERSALITY 171
5 TIME-DEPENDEN
T RANDO
M POTENTIAL
S 173
REFERENCES 177
RANDO
M SPECTRA
L DISTRIBUTION
S
FRIEDRICH GOETZE, FRANZ MERKL
1 ASYMPTOTI
C APPROXIMATIO
N OF RANDO
M SPECTR
A 181
1.1 WIGNE
R AN
D GU
E ENSEMBLES 182
1.2 UNIVERSALITY IN TH
E WIGNE
R ENSEMBLE OF MATRICE
S 186
1.3 LAGUERR
E ENSEMBLES AN
D UNIVERSALITY 189
2 EIGENVALUES OF CUE-ENSEMBLE
S 190
2.1 CORRELATIO
N FUNCTION
S FOR CU
E 190
2.2 FOCK SPACE 193
2.3 PROOF OF TH
E COMBINATORIA
L LEMM
A 197
REFERENCES 202
VIII TABLE OF CONTENTS
PAR
T I
I STOCHASTI
C I
N POPULATIO
N MODEL
S
RENORMALIZATIO
N AN
D UNIVERSALIT
Y
FOR MULTITYP
E POPULATIO
N MODEL
S
ANDREAS GREVEN
1 INTRODUCTIO
N 209
1.1 BACKGROUN
D AN
D MOTIVATIO
N 209
1.2 TH
E MODELS 212
2 QUALITATIV
E PROPERTIE
S OF TH
E POPULATIO
N MODELS 216
2.1 TH
E LONGTIM
E BEHAVIOR 216
2.2 CONTINUU
M LIMIT 218
2.3 HISTORICAL PROCESSES 219
3 RENORMALIZATIO
N ANALYSIS
AN
D HIERARCHICAL MEAN-FIELD LIMIT 220
3.1 MULTIPLE SPACE-TIME RESCALING
AND TH
E HIERARCHICAL MEAN-FIELD LIMIT 220
3.2 BACKGROUND ON TH
E HIERARCHICAL MEAN-FIELD LIMIT 223
4 ANALYSIS OF TH
E LIMITING RENORMALIZE
D SYSTE
M 226
4.1 THE DICHOTOMY STABILITY VERSUS CLUSTERING 226
4.2 CLUSTER FORMATIO
N 227
5 UNIVERSALITY 232
5.1 A NONLINEAR MA
P AN
D IT
S ORBI
T 232
5.2 FIXED POINTS
, FIXED SHAPE
S AN
D THEI
R DOMAI
N OF ATTRACTIO
N . 234
6 HIERARCHICAL MEAN-FIELD CONTINUU
M LIMIT 235
6.1 HIERARCHICAL MEAN-FIELD CONTINUU
M LIMIT 235
6.2 DICHOTOMY FOR TH
E CONTINUU
M LIMIT 241
6.3 HOT SPOT FORMATIO
N 242
6.4 UNIVERSALITY 243
REFERENCES 244
STOCHASTI
C INSERTION-DELETIO
N PROCESSE
S AN
D STATISTICA
L
SEQUENC
E ALIGNMEN
T
DIRK METZLER, ROLAND FLEISSNER, ANTON WAKOLBINGER, ARNDT VON HAESELER
1 INTRODUCTION 247
2 SEQUENCE EVOLUTION MODELS
WITH INSERTION AN
D DELETION 249
2.1 STOCHASTIC INDE
L DYNAMIC
S 249
2.2 TK
F BRIDGES 250
2.3 A GENEALOGY OF POSITION
S 252
2.4 READING A
N INDE
L FOREST FROM LEFT T
O RIGH
T 253
2.5 A FRAGMEN
T INSERTION-DELETIO
N MODEL 255
3 TREE INDEXED INDEL PROCESSES 255
3.1 MULTIPLE TK
F BRIDGES 255
3.2 DECOMPOSING A TREE INDEXED INDEL PAT
H INT
O HEIRS LINES 256
TABLE OF CONTENTS IX
3.3 BUILDING A
N INDE
L HISTOR
Y BY A MARKOV CHAI
N OF TREE
INDEXED HEIRS LINES AN
D SETS OF ACTIVE NODES 257
3.4 GENERATIN
G LABELLED SEQUENCES IN TH
E LEAVES 259
3.5 COMPUTIN
G MULTIPL
E ALIGNMENT LIKELIHOODS 261
3.6 EXTENSIO
N T
O FRAGMEN
T INSERTION
S AN
D DELETIONS 263
4 INDEL MODELS AN
D TREE RECONSTRUCTIO
N 264
REFERENCES 266
BRANCHIN
G PROCESSE
S I
N RANDO
M ENVIRONMEN
T -
A VIE
W O
N CRITICA
L AN
D SUBCRITICA
L CASE
S
MATTHIAS BIRKNER, JOCHEN GEIGER, GOETZ KERSTING
1 INTRODUCTIO
N 269
2 A FORMUL
A FOR TH
E SURVIVAL PROBABILIT
Y 273
3 CRITICALIT
Y 277
4 A TRANSITIO
N WITHI
N TH
E SUBCRITICA
L PHAS
E 279
5 SPATIA
L BRANCHIN
G PROCESSES IN SPACE-TIM
E I.I.D. RANDO
M
ENVIRONMEN
T 285
REFERENCES 289
PAR
T II
I STOCHASTI
C ANALYSI
S
THI
N POINT
S O
F BROWNIA
N MOTIO
N INTERSECTIO
N LOCA
L TIME
S
ACHIM KLENKE
1 INTRODUCTIO
N 295
2 INTERSECTIO
N LOCAL TIM
E 296
3 TH
E MULTIFRACTA
L SPECTRU
M 297
4 NON-INTERSECTIO
N EXPONENT
S 298
5 RESULT
S 298
6 SKETCHES OF PROOF
S 300
REFERENCES 302
COUPLING
, REGULARIT
Y AN
D CURVATUR
E
KARL-THEODOR STURM
1 INTRODUCTIO
N 305
2 TH
E SPACE OF PROBABILIT
Y MEASURES 308
3 PROBABILIT
Y MEASURES ON METRI
E SPACES
OF NONPOSITIVE CURVATUR
E 309
4 BARYCENTER
S 313
5 TRANSPOR
T INEQUALITIE
S AN
D GRADIEN
T ESTIMATE
S 316
6 GRADIEN
T FLOWS ON METRI
E SPACES
AN
D NONLINEAR DIFFUSIONS 320
REFERENCES 324
X TABLE OF CONTENTS
TW
O MATHEMATICA
L APPROACHE
S T
O STOCHASTI
C RESONANC
E
SAMUEL HERRMANN, PETER IMKELLER, ILYA PAVLYUKEVICH
1 INTRODUCTIO
N 327
2 MODEL REDUCTIO
N AN
D STOCHASTI
C RESONANC
E 328
3 PERIODICALL
Y SWITCHING POTENTIAL
S
AN
D TH
E SPECTRA
L APPROAC
H 332
3.1 TH
E SPECTRA
L GA
P AN
D TH
E FIRS
T EIGENFUNCTION 334
3.2 ASYMPTOTIC
S OF TH
E SPA COEFFICIENT 335
3.3 TH
E EFFECTIVE DYNAMICS
: TWO-STAT
E MARKOV CHAI
N 337
4 SMOOT
H PERIODI
C POTENTIAL
S AN
D A ROBUS
T RESONANC
E NOTIO
N 340
4.1 TRANSITIO
N TIME
S FOR TH
E MARKOV CHAI
N 342
4.2 TRANSITIO
N TIME
S FOR TH
E DIFFUSION AN
D ROBUSTNES
S 346
REFERENCES 350
CONTINUIT
Y PROPERTIE
S O
F INERTIA
L MANIFOLD
S
FOR STOCHASTI
C RETARDE
D SEMILINEA
R PARABOLI
C EQUATION
S
IGOR CHUESHOV, MICHAEL SCHEUTZOW, BJOERN SCHMALFUSS
1 PRELIMINARIE
S 355
2 CONSTRUCTIO
N OF INERTIA
L MANIFOLDS 363
3 DEPENDENC
E OF INERTIA
L MANIFOLDS ON TH
E DELAY TIM
E 368
4 DEPENDENC
E OF TH
E INERTIA
L MANIFOLD ON TH
E INTENSIT
Y OF TH
E NOISE .
. 373
REFERENCES 374
TH
E RANDO
M WAL
K REPRESENTATIO
N
FOR INTERACTIN
G DIFFUSIO
N PROCESSE
S
JEAN-DOMINIQUE DEUSCHEL
1 TH
E RANDO
M WALK REPRESENTATIO
N 378
2 ESTIMATE
S FOR TH
E CORRELATION
S 382
3 EXAMPLE
S 386
3.1 PARABOLI
C ANDERSO
N MODEL 391
REFERENCES 391
PAR
T I
V APPLICATION
S O
F STOCHASTI
C ANALYSI
S I
N FINANCE
,
ENGINEERIN
G AN
D ALGORITHM
S
O
N WORST-CAS
E INVESTMEN
T WIT
H APPLICATION
S
I
N FINANC
E AN
D INSURANC
E MATHEMATIC
S
RALF KORN, OLAF MENKENS
1 INTRODUCTIO
N 397
2 TH
E SIMPLEST SET U
P
OF WORST-CAS
E SCENARIO PORTFOLIO OPTIMIZATIO
N 399
3 OPTIMA
L WORST-CAS
E INVESTMEN
T WIT
H NON-HEDGEABL
E RISK 403
4 GENERALIZATION
S AN
D OPE
N PROBLEM
S 404
REFERENCES 406
TABL
E OF CONTENT
S X
I
RANDO
M DYNAMICA
L SYSTEM
S METHOD
S I
N SHI
P STABILITY
:
A CAS
E STUD
Y
LUDWIG ARNOLD, IGOR CHUESHOV, GUNTER OCHS
1 INTRODUCTIO
N 409
2 TH
E MOTIO
N OF A SHIP IN RANDO
M SEAWAY 410
2.1 TH
E GENERA
L MODEL 411
2.2 TH
E ROLL-HEAVE-SWAY INTERACTIO
N IN BEA
M SEA 412
2.3 TH
E EQUATIO
N OF TH
E ROLL MOTIO
N 412
3 RANDO
M DYNAMICA
L SYSTEM
S METHODS
:
A BRIEF REVIEW 414
3.1 GENERA
L SETU
P 414
3.2 INVARIAN
T OBJECT
S AN
D RANDO
M ATTRACTOR
S 415
3.3 LYAPUNO
V EXPONENT
S 416
4 TH
E ROLL MOTIO
N OF A SHIP: A CASE STUD
Y 417
4.1 NUMERICA
L STUDIE
S 417
4.2 EXISTENC
E OF A COMPAC
T INVARIAN
T SET IN TH
E WHIT
E NOISE CASE 424
REFERENCES 432
ANALYSI
S O
F ALGORITHM
S B
Y TH
E CONTRACTIO
N METHOD
:
ADDITIV
E AN
D MAX-RECURSIV
E SEQUENCE
S
RALPH NEININGER, LUDGER RUESCHENDORF
1 INTRODUCTIO
N T
O TH
E CONTRACTIO
N METHO
D 435
2 LIMIT THEORE
M FOR DIVIDE AN
D CONQUE
R ALGORITHM
S 437
3 CONTRACTIO
N AN
D FIXE
D POIN
T PROPERTIE
S WIT
H MAXIM
A 441
4 MAX-RECURSIVE ALGORITHM
S OF DIVIDE AN
D CONQUE
R TYP
E 446
REFERENCES 449
|
any_adam_object | 1 |
author | Deuschel, Jean-Dominique 1957- |
author_GND | (DE-588)129802956 |
author_facet | Deuschel, Jean-Dominique 1957- |
author_role | aut |
author_sort | Deuschel, Jean-Dominique 1957- |
author_variant | j d d jdd |
building | Verbundindex |
bvnumber | BV019821299 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.2 |
callnumber-search | QA274.2 |
callnumber-sort | QA 3274.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
classification_tum | PHY 050f MAT 606f |
ctrlnum | (OCoLC)56697031 (DE-599)BVBBV019821299 |
dewey-full | 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.23 |
dewey-search | 519.23 |
dewey-sort | 3519.23 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02613nam a2200685 c 4500</leader><controlfield tag="001">BV019821299</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050524s2005 gw |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N37,0567</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,A15,0987</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">972000488</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540230335</subfield><subfield code="c">Pp. : EUR 96.25 (freier Pr.), ca. sfr 135.50 (freier Pr.)</subfield><subfield code="9">3-540-23033-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540230335</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10971925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56697031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019821299</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92-06</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82-06</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-06</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interacting stochastic systems</subfield><subfield code="c">Jean-Dominique Deuschel ; Andreas Greven (Eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 450 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische fysica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische processen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexes System</subfield><subfield code="0">(DE-588)4114261-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexes System</subfield><subfield code="0">(DE-588)4114261-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deuschel, Jean-Dominique</subfield><subfield code="d">1957-</subfield><subfield code="0">(DE-588)129802956</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-27110-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013146563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013146563</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV019821299 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T20:06:54Z |
institution | BVB |
isbn | 3540230335 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013146563 |
oclc_num | 56697031 |
open_access_boolean | |
owner | DE-824 DE-91G DE-BY-TUM DE-634 DE-11 DE-83 |
owner_facet | DE-824 DE-91G DE-BY-TUM DE-634 DE-11 DE-83 |
physical | XI, 450 Seiten Diagramme |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
spelling | Interacting stochastic systems Jean-Dominique Deuschel ; Andreas Greven (Eds.) Berlin ; Heidelberg ; New York Springer 2005 XI, 450 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Literaturangaben Auch als Internetausgabe Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity. Mathematische fysica gtt Stochastische analyse gtt Stochastische processen gtt Probabilities Statistical physics Stochastic analysis Stochastic processes Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Komplexes System (DE-588)4114261-5 gnd rswk-swf Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Stochastische Analysis (DE-588)4132272-1 s DE-604 Komplexes System (DE-588)4114261-5 s Stochastisches Modell (DE-588)4057633-4 s Deuschel, Jean-Dominique 1957- (DE-588)129802956 aut Erscheint auch als Online-Ausgabe 978-3-540-27110-9 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013146563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Deuschel, Jean-Dominique 1957- Interacting stochastic systems Mathematische fysica gtt Stochastische analyse gtt Stochastische processen gtt Probabilities Statistical physics Stochastic analysis Stochastic processes Stochastische Analysis (DE-588)4132272-1 gnd Komplexes System (DE-588)4114261-5 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
subject_GND | (DE-588)4132272-1 (DE-588)4114261-5 (DE-588)4057633-4 (DE-588)4143413-4 |
title | Interacting stochastic systems |
title_auth | Interacting stochastic systems |
title_exact_search | Interacting stochastic systems |
title_full | Interacting stochastic systems Jean-Dominique Deuschel ; Andreas Greven (Eds.) |
title_fullStr | Interacting stochastic systems Jean-Dominique Deuschel ; Andreas Greven (Eds.) |
title_full_unstemmed | Interacting stochastic systems Jean-Dominique Deuschel ; Andreas Greven (Eds.) |
title_short | Interacting stochastic systems |
title_sort | interacting stochastic systems |
topic | Mathematische fysica gtt Stochastische analyse gtt Stochastische processen gtt Probabilities Statistical physics Stochastic analysis Stochastic processes Stochastische Analysis (DE-588)4132272-1 gnd Komplexes System (DE-588)4114261-5 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
topic_facet | Mathematische fysica Stochastische analyse Stochastische processen Probabilities Statistical physics Stochastic analysis Stochastic processes Stochastische Analysis Komplexes System Stochastisches Modell Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013146563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT deuscheljeandominique interactingstochasticsystems |