Electromagnetic compatibility handbook:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | Getr. Zählung Ill., graph. Darst. |
ISBN: | 0849320879 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV019745389 | ||
003 | DE-604 | ||
005 | 20060704 | ||
007 | t | ||
008 | 050322s2005 xxuad|| |||| 00||| eng d | ||
010 | |a 2004043571 | ||
020 | |a 0849320879 |c alk. paper |9 0-8493-2087-9 | ||
035 | |a (OCoLC)54371721 | ||
035 | |a (DE-599)BVBBV019745389 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-91 |a DE-573 |a DE-1043 |a DE-706 | ||
050 | 0 | |a TK7867.2 | |
082 | 0 | |a 621.382/24 |2 22 | |
084 | |a ZN 4050 |0 (DE-625)157345: |2 rvk | ||
084 | |a ELT 242f |2 stub | ||
100 | 1 | |a Kaiser, Kenneth L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Electromagnetic compatibility handbook |c Kenneth L. Kaiser |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2005 | |
300 | |a Getr. Zählung |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Electromagnetic compatibility |v Handbooks, manuals, etc | |
650 | 0 | 7 | |a Elektromagnetische Verträglichkeit |0 (DE-588)4138552-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektromagnetische Verträglichkeit |0 (DE-588)4138552-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013072021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013072021 |
Datensatz im Suchindex
_version_ | 1804133214234607616 |
---|---|
adam_text | ELECTROMAGNETIC
HANDBOOK
KENNETH L KAISER
CRC PRESS
Boca Raton London New York Washington, D C
Contents
1 EMI Sources
1 1 Industrial Noise Sources 1-1
1 2 Office Noise Sources 1-1
1 3 Residential Noise Sources 1-1
1 4 Holiday Noise Sources 1-2
1 5 Natural Noise Sources 1-2
1 6 Automobile Noise Sources 1-2
1 7 RF Electromagnetic Sources in the Spectrum 1-2
1 8 Noise, Interference, and Unwanted Signals 1-2
2
Decibel and Approximations
2 1 RMS vs Maximum Amplitude
2 2 Relative Decibels
2 3 Electric Field, Magnetic Field, and Power Density dB Conversions
2 4 Adding dB to dBm
2 5 Adding dB to dBmV
2 6 Adding dB to dBmA
2 7 Negative dB
2 8 Significance of 3 dB and 5 dB
2 9 Significance of 6 dB and 10 dB
2 10 Is dB Power or Voltage Gain?
2 11 dB Version of Equations
2 12 dB Multiplication
2 13 Adding dBmV to dBmV
2 14 dB Approximations
2 15 Signal Sources and Unmatched Loads
2 16 Common Approximations
2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-8
2-9
2-9
2-10
2-10
2-10
2-11
3 Electrical Length
3 1 Electrical Length vs Physical Length
3 2 Standing Waves
3 3 Antenna Effects and Effective Permittivity
3 4 Unshielded Conductor Radiation
3 5 PCB Trace Radiation
3 6 Electrically-Large Car
3 7 Properties of Electrically-Small Metallic Objects
3-1
3-2
3-3
3-5
3-5
3-5
3-6
xm
4 Fast Bode Magnitude Plotting
4 1 Quickly Sketching a Bode Plot 4-1
42A Real Function *10
4 3 The Spectrum of Common Functions 4-13
4 4 Equations for the Spectral Magnitude 4-14
4 5 Expression from the Bode Plot 4-17
4 6 Common Improper Standard Forms 4-19
4 7 The Other Bode Plot: The Phase Plot 4-21
5 Skin Depth, Wire Impedance, and Nonideal Resistors
5 1 Eddy’s Currents 5-1
5 2 The Value of a dc Resistance Measurement 5-2
5 3 Skin Depth for Round Wires 5-2
5 4 Rectangular vs Circular Wires 5-6
5 5 Fligh-Frequency Resistance Formula 5-8
5 6 Importance of the Skin Depth when 8 r% and Litz Wire 5-8
5 7 Inductance Dominating over Resistance 5-12
5 8 Wire Gauge and Cross-Sectional Area 5-12
5 9 Importance of Skin Depth in House Wiring 5-15
5 10 Stranded and Solid Wire 5-16
5 11 Aluminum Wire in a House 5-1/
5 12 When is the Internal Inductance Important? 5-19
5 13 Adjusting a Transformer Tap to Compensate for Line Drop 5-20
5 14 Power Loss in Speaker Wire 5-21
5 15 Impedance of a Grounding Jumper Wire 5-23
5 16 The Resonance of a Resistor 5-25
5 17 Resistor Acting Like a Capacitor or an Inductor 5-27
5 18 Resistors without an Impedance Peak 5-30
5 19 A Resistor Cage 5-32
5 20 Resistor Types 5-34
5 21 Exotic Audio System Interconnect Cable 5-35
6 Nonideal Capacitors and Inductors
6 1 Realistic Range of Impedances 5-1
6 2 Model of a Practical Capacitor 6-2
6 3 Model of a Practical Inductor 6-4
6 4 Resonant Frequency of a Practical Capacitor 6-5
6 5 Resonant Frequency of a Practical Inductor 6-6
6 6 Resistive Region of a Capacitor 6-7
6 7 Resistive Region of an Inductor 6-9
6 8 ESR Determination 6-12
6 9 Maximum Q of an Iron-Core Inductor 6-13
6 10 Why Place Two Different Capacitors in Parallel? 6-16
xiv
6 11 Capacitor Types 6-20
6 12 Choosing the Right Capacitor 6-23
6 13 Inductor Types 6-23
6 14 Impedance Summary 6-25
7 Passive Filters
7 1 Filters 7-1
7 2 Low-Pass Capacitor Filter 7-3
7 3 High-Pass Capacitor Filter 7-5
7 4 Low-Pass Inductor Filter 7-6
7 5 High-Pass Inductor Filter 7-8
7 6 Low-Pass RC Filter 7-9
7 7 Low-Pass LC Filter 7-13
7 8 Low-Pass CL Filter 7-16
7 9 High-Pass LC and CL Filters 7-19
7 10 Series Band-Pass Filter 7-21
7 11 Shunt Band-Pass Filter 7-27
7 12 Band-Reject Filters 7-30
7 13 Low-Pass jt Filter 7-34
7 14 High-Pass 7t Filter 7-38
7 15 Low-Pass T Filter 7-41
7 16 High-Pass T Filter 7-43
7 17 Filter Comparisons 7-44
7 18 RC Filter Comparisons 7-49
7 19 More RC Filters 7-53
7 20 Maximum Possible Q 7-53
7 21 High-Q Circuit Conversions 7-58
7 22 Q Selection for Filters 7-62
7 23 Series and Parallel RLC Circuit Properties 7-70
7 24 Measuring the Q of a Crystal 7-86
7 25 Distorting a Signal 7-95
7 26 Passive vs Active Filters 7-100
7 27 Insertion Loss 7-101
7 28 Insertion Loss and Q 7-103
7 29 Filtering at High-impedance Levels 7-108
7 30 Filtering on A/2 Transmission Lines 7-108
7 31 Impedance “Matching” with Passive Filters 7-109
7 32 Three-Terminal Capacitor 7-127
7 33 Feed-Through Capacitor 7-128
8 Cable Modeling
8 1 Purpose of a Cable 8-1
8 2 High-Fidelity Speaker Wire Candidates 8-3
xv
8 3 Selecting the Cable Model 8-6
8 4 Failure of the Lumped-Circuit Model 8-10
8 5 Characteristic Impedance 8-10
8 6 Characteristic Impedance of a dc Power Bus 8-14
8 7 Reducing the Characteristic Impedance 8-20
8 8 Influence of Dielectric Constant 8-20
8 9 Coax and Twin-Lead 8-21
8 10 Thinly Coated Twin-Lead 8-25
8 11 Beads in Coax 8-30
8 12 Dielectric Resistance and Insulators 8-31
8 13 Cable Capacitance and Audio Cables 8-33
8 14 Grounding Strap Impedance 8-34
8 15 ESD Signal Wire Guideline 8-40
8 16 TwistedPair 8-42
8 17 When the Line Can Be Ignored 8-45
8 18 Line Resonance 8-46
8 19 Multiple Receiver Loading 8-47
8 20 Proximity Effect 8-50
8 21 Characteristic Impedance Formula 8-52
9 Transient Behavior in the Time Domain
9 1 Transient vs Sinusoidal Steady State 9-1
92A Time-Delay Circuit 9-2
9 3 An RC Integrator 9-6
9 4 An RC Differentiator 9-8
95A More General RC Circuit 9-11
9 6 Static Charge Buildup 9-14
9 7 Current Surges and Capacitor Dividers 9-18
9 8 Compensation, General Voltage Divider, and Multiple Capacitors 9-22
9 9 Multiple-Supply RC Circuits 9-26
9 10 RC Rise Time and Speed 9-31
9 11 Measuring the Time Constant 9-32
9 12 Energy and Power in RC Circuits 9-34
9 13 The Inductive Kick 9-37
9 14 RL vs RC Differentiators and Integrators 9-40
9 15 Inductive Load Switching, Release Time, and Rise Time 9-41
9 16 dc Biasing an Inductor and Inductive Energy 9-45
9 17 Inductive vs Capacitive Circuits 9-48
9 18 Series and Parallel RLC Circuits 9-49
9 19 Ringing as a Function of Q 9-54
9 20 Ringing and Resonant Frequency 9-59
9 21 Digital Signal Ringing 9-60
9 22 Effect of the Energy Content of the Input Signal on Ringing 9-61
9 23 Oscillation Burst—The Ringing Circuit 9-62
xvi
9 24 Shunt Peaking to Reduce the Rise Time 9-68
9 25 Other Two Energy-Storage Element Circuits 9-73
9 26 Double-RC Lumped Interconnect Model 9-75
9 27 Advanced RLC Circuit 9-80
9 28 More Overshoot, Settling Time, and Ringing Frequency 9-83
10 Air Breakdown
10 1 Breakdown Voltage 10-1
10 2 Glows, Arcs, Coronas, and Sparks 10-4
10 3 Nonuniform Fields and Time-Varying Arc 10-5
10 4 Ideal Switching of Simple Loads 10-8
10 5 Ideal Switching of Complex Loads 10-11
10 6 Switching and Breakdown 10-16
10 7 Showering Arc 10-18
10 8 Speed of Switching 10-18
10 9 Suppressing the Breakdown 10-19
10 10 Switch Network Example 10-26
10 11 Arc Suppression with Resistive Loads 10-30
10 12 Arc Suppression with Capacitive Loads 10-31
10 13 Arc Suppression with Inductive Loads 10-33
10 14 Sparkingat Very Low Voltages? 10-38
10 15 Switch Corrosion and Erosion 10-39
10 16 Maximum Electric Field and Breakdown Table 10-44
10 17 Minimum Corona Voltage ; 10-58
10 18 Voltage Rating of Coax ^ 10-62
10 19 Solutions to Poisson’s Equation 10-65
10 20 Arcing in a Silo 10-72
10 21 All of the Electric Field Boundary Conditions 10-78
10 22 Powder Bed 10-91
10 23 The Field from Corona 10-93
11 Transient Behavior in the Frequency Domain
11 1 What Is the Laplace Transform? H-l
11 2 Properties of the Laplace Transform
11 3 Massive Laplace Transform Table 11-41
11 4 The Step Function 11*46
11 5 The Impulse Function 11-55
11 6 The Impulse Response, Step Response, and Transfer Function 11-68
11 7 Modeling a Real Inductor Using a Current Ramp 11-75
11 8 Sinusoidal Steady State with Transforms 11-77
11 9 Initial Capacitor Voltages and Initial Inductor Currents 11-79
11 10 Voltage Zapper 11-84
11 11 Blimp Amplitude 1188
xvii
11 12 Audio Filter Response 11-91
11 13 Half-Wave Rectifier 11-93
11 14 The Power of the Laplace Transform 11-97
12 Spectra of Periodic and Aperiodic Signals
12 1 Time and Frequency Viewpoints and Periodicity 12-1
12 2 The Marvelous Fourier Series 12-6
12 3 Fourier Series Forms for Periodic Signals and their Spectra 12-12
12 4 Success of the Fourier Series Approximation 12-104
12 5 Fourier Series Table 12-107
12 6 Converting between the Various Fourier Forms 12-107
12 7 Using the Table to Determine Other Series 12-112
12 8 Last Resort: Using the Definition to Determine the Fourier Series 12-133
12 9 Fourier Series Shortcuts via Symmetry 12-140
12 10 Circuit Analysis Using the Fourier Series 12-142
12 11 Amplitude Spectrum of a Digital Waveform 12-155
12 12 20X Guideline for Digital Waveforms 12-159
12 13 Doubling the Frequency and Halving the Rise Time 12-161
12 14 Fourier and Laplace Transforms — Necessary Tools
for Understanding Aperiodic Signals 12-165
12 15 Obtaining the Fourier Transform via Properties, the Laplace
Transform, and the Fourier Series 12-167
12 16 Spectrums of Aperiodic Signals 12-181
12 17 Smoothness and Amplitude Spectrum 12-185
12 18 Highest Frequency of Interest of a Digital Waveform 12-188
12 19 Double-Exponential Pulse 12-193
12 20 Modeling a Stroke of Lightning 12-194
12 21 Spectrum of Double-Exponential Pulse 12-197
12 22 Energy in a Double-Exponential Pulse 12-198
12 23 Using Just the Rise Time 12-200
12 24 Many Delay and Rise Times 12-203
12 25 Effective Rise Time of Systems in Cascade 12-225
12 26 Impulse Responses of Many Systems in Cascade 12-230
12 27 Many Bandwidths 12-233
12 28 Time-Bandwidth Product 12-239
12 29 Consequence of Ripple in the Frequency Domain 12-243
12 30 Frequency-Domain or Time-Domain Testing? 12-245
13 Transmission Lines and Matching
13 1 V oltage Reflection and Transmission Coefficients 13-1
13 2 Impedance Mismatch 13-2
13 3 VSWR and SWR 13-3
13 4 The Cost of a VSWR 1 13-7
xviii
13 5 Distinguishing between the Load and Source 13-8
13 6 Transient and Steady-State Input Impedance 13-9
13 7 Transient Reflections 13-11
13 8 Matching at the Receiver and its Cost 13-13
13 9 Shunt Matching with Distributed Receivers 13-15
13 10 Microstrip Branching 13-16
13 11 Shunt Diode Matching 13-18
13 12 Shunt RC Matching 13-19
13 13 Matching at the Driver and its Cost 13-23
13 14 Series Matching with Multiple Receivers 13-25
13 15 Effects of Nonzero Source and Load Reflection Coefficients 13-28
13 16 Signal Bounce as a Function of Time 13-29
13 17 Settling Time 13-30
13 18 Settling Time vs Reflection Coefficient 13-32
13 19 Receiver Voltage when Rise Time = Line Delay 13-33
13 20 Receiver Voltage when Rise Time « Line Delay 13-35
13 21 Receiver Voltage when Rise Time » Line Delay 13-37
13 22 Advanced Transient Problem 13-38
13 23 Ringing in Lumped Circuits 13-42
13 24 More Shunt Matching 13-42
13 25 Shunt Matching with a Split Termination for a TTL System 13-44
13 26 Shunt Matching with a Split Termination for a CMOS System 13-47
13 27 Shunt Matching with a Split Termination for an ECL System 13-47
13 28 Split-Termination Equivalent 13-49
13 29 Experimentally Determining the Line Impedance 13-50
13 30 Series Matching and Dynamic Output Resistance 13-51
13 31 Driver Current for Series and Shunt Matching 13-54
13 32 Summary of Matching Methods 13-55
13 33 Relationship Between Sinusoidal Input and Output Voltage 13-56
13 34 The Sinusoidal Current Expression 13-60
13 35 The Sinusoidal Input Impedance 13-62
13 36 Coaxial Cable Branching 13-65
13 37 “Y” Splitter for “Hair-Ball” Networks 13-67
13 38 Stub Tuning 13-69
13 39 Inductive Loading 13-75
13 40 Low-Loss Lines and Short Lines 13-79
13 41 Inductive Line 13-84
13 42 Capacitive Line 13-87
13 43 The Lossy Expressions for Sinusoidal Steady-State 13-89
13 44 Telephone Lines and the “RC Region 13-91
13 45 Transmission Line Parameter Expressions 13-95
13 46 S Parameters 13-99
13 47 Using the Sinusoidal Reflection Coefficient for Transient Problems 13-105
13 48 Effect of Receiver Capacitance on Transient Behavior 13-106
xix
13 49 Complete Reflection due to Excessive Capacitance 13-107
13 50 Amplitude of Mismatch “Blimp” from Receiver Capacitance 13-107
13 51 When not to Match! 13-110
14 Passive Contact Probes
14 1 Low-Impedance Passive Probe 14-1
14 2 Improved Model of the Low-Impedance Passive Probe 14-2
14 3 Operating Range of the Low-Impedance Passive Probe 14-4
14 4 Improved Model of the Cable and Scope 14-4
14 5 High-Impedance Passive Probe 14-7
14 6 Input Impedance of a High-Impedance Passive Probe 14-9
14 7 High-Impedance Probe Compensator 14-10
14 8 Testing with a Square Wave 14-13
14 9 Effect of Inductance on the Probe 14-17
15 Inductance, Magnetic Coupling, and Transformers
15 1 Inductance 15-1
15 2 Equivalent Inductance 15-2
15 3 Winding Direction and the Dot Convention 15-4
15 4 Modeling the Inductance of Two Parallel Strips 15-6
15 5 Modeling the Inductance of a Loop Near a Wire 15-7
15 6 Changing Inductance via Magnetic Coupling 15-8
15 7 Different Currents but Identical Voltages 15-12
15 8 Useful Properties of Parallel Inductors 15-13
15 9 Grounding Strap Inductance 15-18
15 10 Multiple Conductor Grounding Straps — 15-26
15 11 Reducing PCB Land Inductance 15-31
15 12 Typical Mutual Inductance of Wire 15-33
15 13 Lead Position on Capacitors 15-35
15 14 The Many Inductances and the “Sniffer” 15-38
15 15 Optimum Loop Dimensions 15-46
15 16 Pickup Loop Loading Down the Circuit 15-48
15 17 Inductance Formula 15-51
15 18 Ideal Transformers Operating in Sinusoidal Steady State 15-57
15 19 Typical Ideal Transformer Problems 15-62
15 20 RF Tuning 15-70
15 21 Behavior of a Nonideal Transformer 15-74
15 22 Linear Transformer Models 15-79
15 23 Low-Frequency Model 15-81
15 24 Mid-Frequency and Power-Frequency Models 15-83
15 25 High-Frequency Model 15-85
15 26 Wideband Models 15-86
15 27 Multiwinding and Tapped Transformers 15-90
xx
15 28 Placing Transformers in Series and Parallel 15-94
15 29 Hybrid Transformers 15-97
15 30 Autotransformers 15-104
15 31 Transformer Ratings 15-110
15 32 Nonlinear In-Rush Current 15-112
15 33 Instrument Transformers 15-116
15 34 Tuned Transformers 15-119
15 35 Some “Other” Transformers 15-138
15 36 Determining All of the Unknowns 15-141
15 37 Transient Inputs to Linear Transformers 15-151
15 38 Step Input to a Real Step-Up Transformer 15-158
15 39 Step Input to a Real Step-Down Transformer 15-166
15 40 When Are Transformers Used? 15-167
16 Magnetic Materials and a Few Devices
16 1B= pH 16-1
16 2 Magnetic Circuits 16-2
16 3 Toroid vs Rod 16-8
16 4 Common-Mode Choke 16-10
16 5 Ringing and Chokes 16-12
16 6 Increasing Inductance with a Bead 16-13
16 7 Relationship between Bead Parameters and Inductance 16-15
16 8 Saturating Ferrite Beads 16-17
16 9 How Ferrite Filters Work 16-19
16 10 Loss Factor 16-21
16 11 The Hysteresis Curve and the many Permeabilities 16-23
16 12 Further Discussion of the Hysteresis Curve 16-33
16 13 Hard vs Soft 16-35
16 14 Survey of Typical Magnetic Properties 16-38
16 15 Demagnetization Field and Magnetic Charge 16-41
16 16 Purpose of the Air Gap 16-54
16 17 Force, Torque, and Magnetization Current 16-60
16 18 Free Energy from a Magnet? 16-67
17 Baiuns and Balanced Circuits
17 1 Definition of Balanced System 17-1
17 2 Voltage Baiun 17-2
17 3 Another Voltage Baiun 17-6
17 4 Current Baiun 17-8
17 5 Another Current Baiun 17-10
17 6 Why Baiuns Do Not Always Work 17-13
17 7 Another Common-Mode Choke Limitation and Shielding a Choke 17-19
17 8 Varying Common-Mode Impedance 17-21
xxi
17 9 Excess Cable 17-22
17 10 Location of Choke 17-23
17 11 Multiple Cores 17-25
17 12 Why a System Is Never Truly Balanced 17-25
17 13 Balancing and Common-Mode Currents 17-25
17 14 A Resistive Balanced Circuit 17-26
17 15 The Conversion Process 17-27
17 16 CMRR 17-29
17 17 Balanced Input Receivers 17-32
17 18 Balanced Output Drivers 17-36
17 19 Balanced and Single-Ended Drivers and Receivers 17-37
17 20 Balanced and Matched 17-44
17 21 Common Choke 17-47
17 22 Ferrite Beads 17-50
17 23 Grounding Coax Outside a House 17-51
17 24 Isolation Transformers 17-52
17 25 Single, Double, and Triple Transformer Shielding 17-53
17 26 Optoisolators 17-58
17 27 Common-Mode and Differential-Mode Impedance 17-59
17 28 Transmission Line Baiuns 17-63
17 29 Matching Tt and 0 Pads 17-67
17 30 Matching T and H Pads 17-70
17 31 Matching L and U Pads 17-73
17 32 Bridged T and H Pads 17-76
17 33 Low-Impedance and High-Attenuation Pads 17-78
18 Cable Shielding and Crosstalk
18 1 Best Cable to Reduce Magnetic Noise 18-1
18 2 Connecting Balanced and Unbalanced Systems — 18-6
18 3 Bicoaxial Line 18-12
18 4 Reducing Noise Through Transformers 18-13
18 5 Modeling a Cable as a Transformer 18-17
18 6 Break Frequency of Coax 18-19
18 7 Multiple Grounding Points for Coax 18-22
18 8 Keeping Noise off the Shield 18-24
18 9 Switching the Neutral and Hot Wires 18-26
18 10 Avoiding Ground Loops and Hum 18-27
18 11 Multipoint and Hybrid Grounding 18-31
18 12 Dynamic Range Between Systems 18-33
18 13 Multiple Returns in Ribbon Cable 18-35
J 8 14 Loose Wires as a Cable 18-38
18 15 Transfer Impedance 18-38
18 16 Loss Impedances and Transfer Admittance 18-48
18 17 The Coupling Model 18-54
XXII
18 18 Pigtails and Connectors—Weak Links in a System 18-57
18 19 Capacitive or Inductive Crosstalk? 18-59
18 20 Measurement Tools 18-62
18 21 Susceptibility of High and Low Resistances 18-63
18 22 Susceptibility of Scopes 18-64
18 23 Foam Encapsulation 18-65
18 24 Inductive Crosstalk and the 3-W Guideline 18-65
18 25 Capacitive Crosstalk and the 3-W Guideline 18-69
18 26 Long Lines vs Close Lines 18-73
18 27 6 Guideline for Telephone Lines 18-75
18 28 Four-Conductor Trace Layout 18-76
18 29 377 a Guideline 18-81
18 30 Why Twisting Often Helps 18-83
18 31 RC Circuit and Crosstalk 18-89
18 32 Summary of Methods to Reduce Crosstalk 18-92
18 33 Fiber’s Weakness 18-93
19 Radiated Emissions and Susceptibility
19 1 Radiated or Conducted Vehicle Interference? 19-1
19 2 The Automobile Noise Mystery 19-2
19 3 Copper Plane Addition 19-6
19 4 Emissions from Twin-Lead Line 19-7
19 5 Differential-Mode Current Emissions from Twin-Lead Line 19-9
19 6 Common-Mode Current Emissions from Twin-Lead Line 19-10
19 7 Reducing Emission Levels 19-11
19 8 Susceptibility of Twin-Lead Line 19-13
19 9 Small-Loop and Hertzian Dipole Models 19-17
19 10 Neglecting the Capacitance and Inductance 19-20
19 11 Probe Lead Pickup 19-21
19 12 Wave Equation 19-25
19 13 Susceptibility of Electrically-Long Twin-Lead Line 19-27
19 14 Susceptibility of Electrically-Long Wire Above a Ground Plane 19-35
19 15 Theory of Current Probes 19-44
19 16 Loaded Current Probe 19-55
19 17 Transfer Impedance of Current Probes 19-59
20 Conducted Emissions and Susceptibility
20 1 Polluted Power Line 20-1
20 2 Locating Malicious Conducted Interference 20-4
20 3 Suppressors 20-5
20 4 LISN’s 20-20
20 5 Input Impedance of LISN 20-24
20 6 Maximum Input Impedance of a Network 20-28
XXlil
20 7 Resonance of L1SN with Capacitive and Inductive Loading 20-31
20 8 Separating the Common and Differential 20-34
20 9 Common-Mode and Differential-Mode Filters 20-36
20 10 Nonlinear Evils 20-38
21 Plane Wave Shielding
21 1 The “Magic” of Shielding Waves Revealed 21-1
21 2 The Impedance of a Wave 21-2
21 3 Impedance of Air, Real Metals, and Real insulators 21-3
21 4 Reflection and Transmission Coefficients 21-7
21 5 Plane Wave Power 21-8
21 6 Single-Layer Conducting Shield 21-H
21 7 Thin Shields and Reflection Loss 21-18
21 8 Thick Shields and Absorption Loss 21-20
21 9 Skin Depth 21-23
21 10 Skin Depth for Good Insulators 21-24
21 11 Skin Depth for Several Good Metals 21-25
21 12 Complex Permittivity and RF Through Human Fat 21-27
21 13 Microwaves through Human Fat 21-30
21 14 Table of Dielectric Constants and Loss Tangents 21-32
21 15 Loss in dB Per Skin Depth 21-33
21 16 Reflection, Absorption, and Multiple-Reflection Losses 21-41
21 17 Effect of Dielectric Constant on Shielding 21-43
21 18 Near Field or Far Field? 21-43
21 19 Wave Impedance 21-48
22 Electric Field Shielding
22 1 The “Magic” of Electric Field Shielding Revealed 22-1
22 2 Size is Important! 22-3
22 3 Shielding Reciprocity? 22-6
22 4 Using Capacitance to Model Shielding 22-8
22 5 Capacitor Shielding 22-10
22 6 Three-Terminal Capacitor 22-12
22-7 Shielding Cans 22-13
22 8 Finite-Conductivity Spherical Bodies 22-19
22 9 Step Response of Spherical Bodies 22-26
22 10 Finite-Conductivity Cylindrical Body 22-27
22 11 Electric Blankets and Infants 22-29
22 12 Typical Electric Field Strengths 22-30
22 13 Current Through and Voltage Across a Field-Immersed Person 22-30
22 14 Insulating Spherical Shields 22-39
22 15 Insulating Cylindrical Shields 22-41
22 16 EQS and Perfect Conductors 22-42
XXIV
23 Magnetic Field Shielding
23 1 The “Magic” of Magnetic Field Shielding Revealed 23-1
23 2 Magnetic Field from Simple Current Distributions 23-2
23 3 Magnetic Fields for Other Current Distributions 23-16
23 4 Magnetic Field Boundary Conditions 23-32
23 5 Flux Shunting Explained via Boundary Conditions 23-38
23 6 Self Shielding Nature of Coax 23-41
23 7 Method of Images for Currents 23-50
23 8 Wire Partners Can Reduce Fields 23-54
23 9 Thick Poor Conductors 1 23-62
23 10 Thin Good Conductors 23-64
23 11 Spherical and Cylindrical Conducting and Magnetic Shields 23-67
23 12 Pure Magnetic Spherical Shell 23-76
23 13 Pure Magnetic Cylindrical Shell 23-79
23 14 Finite-Length Cylindrical Shell • 23-82
23 15 Shielding the Source and Shielding Reciprocity 23-85
23 16 Shielding a Cosmetologist with a Body Suit 23-87
23 17 Power Line Shielding via Burying 23-91
23 18 Wave Impedance Concept 23-98
23 19 Flat Shielding of Current-Carrying Loops 23-103
23 20 Grounding Shields 23-105
23 21 Cheap Shielding 23-105
23 22 Nonideal Shapes 23-106
23 23 Reducing the Magnetic Coupling Between Inductors 23-107
23 24 Typical Magnetic Flux Densities 1 23-109
23 25 MQS and Perfect Conductors : 23-112
23 26 Decoupled Time-Varying Electric and Magnetic Fields 23-118
24 Additional Shielding Concepts
24 1 When Is a Shield Flat? 24-1
24 2 Performance of a Shielded Room 24-3
24 3 Laminated Shields 24-5
24 4 Shields with an Air Gap 24-8
24 5 Gold Coating on Glass 24-17
24 6 Laminates for Magnetic Fields 24-21
24 7 Rust Never Sleeps—Corrosion 24-32
24 8 Surface Impedance 24-34
24 9 Voltage and Current along a Chassis 24-40
24 10 Impedance of Coated Conductors 24-42
24 11 Nontraditional Shielding Materials 24-44
24 12 Shielding Effectiveness vs Surface Resistance 24-47
24 13 Near-Field Electric Shielding Effectiveness 24-49
24 14 An Equipotential Surface 24-51
24 15 Electric vs Magnetic Field Measurements 24-52
XXV
24 16 Single-Conductor Transmission Line 24-54
24 17 TEM, TE, and TM Waves 24-54
24 18 Cutoff Frequency of a Waveguide 24-55
24 19 Attenuation Beyond Cutoff 24-59
24 20 Seepage through a Seam 24-61
24 21 One Large Hole vs Several Smaller Holes 24-64
24 22 Honeycomb Ventilation Openings 24-66
24 23 Coupling through an Aperture 24-67
24 24 Radio in a Metal Box 24-74
24 25 Lightning Protection Inside an Automobile 24-75
25 Test Chambers
25 1 Cage Antenna 25-1
25 2 Screen Rooms and OATS’ 25-7
25 3 Resonant Frequency of a Midsize Car and Notebook Computer 25-15
25 4 High or Low Q? 25-15
25 5 Abundance of Modes and Mode Degeneracy 25-21
25 6 Stirring Up the Fields 25-25
25 7 Dark Room 25-30
25 8 TEM Cell 25-36
26 Floating Metal and Guard Electrodes
26 1 Examples of Floating Metal 26-1
26 2 Unused Conductors 26-2
26 3 To Ground or Not to Ground Nearby Metal 26-3
26 4 Artificially Changing Capacitance and Inductance 26-5
26 5 Loose Metal 26-10
26 6 Arcing and Floating Metal 26-11
26 7 Floating Inputs 26-16
26 8 Tube vs Transistor Multimeter 26-18
26 9 The Powerless Voltage 26-19
26 10 Standard Bridge Circuit 26-19
26 11 Connection to a Floating Bridge 26-21
26 12 Irrelevance of Floating a Shield 26-23
26 13 Strain Gauge Shielding 26-24
26 14 Electronically Reducing Capacitance—The Guard Electrode 26-26
26 15 Interference Control with a Guard Shield 26-30
27 Electrostatic Discharge
27 1 WhatisESD? 27-1
27-2 Methods of Charging 27-1
27 3 Triboelectric Series 27-5
27 4 Microphony 27-7
xxvi
27 5 Voltage and Current Responses 27-11
27 6 Sources of Current 27-14
27 7 Rate of Charge Decay 27-18
27 8 Maximum Surface Charge Before Breakdown 27-25
27 9 Grounded Conducting Objects and Charged Insulating Surfaces 27-32
27 10 Charge Accumulation Along Interfaces 27-45
27 11 Convection Charge Flow 27-52
27 12 Potential of an Insulator’s Surface 27-58
27 13 Electric Field from Simple Charge Distributions 27-60
27 14 Electric Field From Other Charge Distributions 27-64
27 15 Discharges Classified 27-71
27 16 Minimum Ignition Energy 27-76
27 17 Electrostatic Hazard Case Studies 27-81
27 18 Measuring Charge 27-85
27 19 Measuring the Electric Field 27-97
27 20 Measuring Voltage 27-105
27 21 Measuring Bulk and Surface Resistivity 27-109
27 22 Maximum Body Voltage and Typical Capacitances 27-116
27 23 RLC Discharge Model 27-119
27 24 ESD Rules-of-Thumb and Guidelines : 27-121
27 25 Raindrop Bursts, P-Static, and Corona Noise 27-123
27 26 Locating Weaknesses with a “Zapper” 27-124
27 27 Surround, Ground, and Impound 27-124
27 28 Wrist and Ankle Straps : —27-125
27 29 Floor Coatings , 27-126
27 30 Pink, Black, and Shielded Bags 27-127
27 31 Static-Dissipative Work Surfaces 27-130
27 32 Sugar Charge Decay 27-136
27 33 Capacitance Measurement for Multiple Conductors 27-141
27 34 Energy and Capacitance 27-148
27 35 Capacitance Formula 27-152
Grounding
28 1 Verbs, Nouns, and Adjectives 28-1
28 2 Groundless Devices 28-2
28 3 Ground Symbols 28-2
28 4 A “Good” Ground Reference 28-3
28 5 Reasons to Earth Ground 28-3
28 6 Voltage Hazards Involving Ground , 28-4
28 7 Safe Current and Voltage Levels 28-5
28 8 Transient Shocks 28-10
28 9 Grounding the Neutral Wire in Service Panels 28-14
28 10 GFIs 28-16
28 11 IDCIs and the Achilles’ Heel of GFCIs 28-20
xxvii
28 12 Dangerous Two-Prong Devices 28-22
28 13 Pigtail Adapters 28-23
28 14 Safe Leakage Current for an Electric Razor 28-24
28 15 Isolation T ransformer 28-26
28 16 Resistance Definition 28-29
28 17 Resistance to Ground Formula 28-36
28 18 2 2L Guideline 28-48
28 19 Surface Potentials 28-50
28 20 When Lightning Hits 28-56
28 21 The Purpose of Lightning Rods 28-59
28 22 Rod Materials 28-60
28 23 Measuring Earth’s Resistivity 28-60
28 24 Measuring the Resistance of an Earthing Electrode 28-74
28 25 Three-Point Method Again 28-79
28 26 Surge Impedance of an Electrode 28-81
28 27 Dedicated Ground in a Plant 28-82
28 28 Single-Point vs Multiple-Point Grounding 28-83
29 Circuit Board Layout for EMC
29 1 EMC Overview 29-1
29 2 Immunity or Susceptibility? 29-2
29 3 System Levels 29-3
29 4 Introductory Component Layout Concepts 29-3
29 5 Single-Layer PCB System Layout 29-5
29 6 Single-Layer PCB Power Distribution System 29-6
29 7 Multilayer Boards 29-10
29 8 Board Resonance 29-12
29 9 The Flow of Charge Down a Line 29-15
29 10 Printed Circuit Board Trace Configurations 29-17
29 11 Decoupling Capacitors 29-21
29 12 More Decoupling Capacitors 29-24
30 Antennas
30 1 Radiation Resistance 30-1
30 2 Radiation Efficiency and Ohmic Losses 30-2
30 3 Small Antennas 30-7
30 4 Large Antennas 30-11
30 5 Input Impedance 30-15
30 6 Directive Gain, Directivity, and Power Gain 30-23
30 7 Q and Bandwidth 30-27
30 8 Receiving vs Transmitting Antenna 30-32
30 9 The Right Antenna 30-35
30 10 Wave Orientation 30-53
xxviii
30 11 Objects Close to an Antenna 30-56
30 12 Antenna Factor 30-57
30 13 Near-Field H Antennas and Probes 30-59
30 14 Shielded H-Field Probe 30-61
30 15 Magnetic-Core Rod Antenna 30-67
30 16 Near-Field E Antennas and Probes 30-73
30 17 Loop vs Rod Antenna 30-76
30 18 Friis’s Formula 30-77
30 19 Fields from a Distant Source 30-79
Appendix A: Summary of the Three Major Coordinate Systems A-l
Appendix B: Definitions for Common and Uncommon Functions B-l
Appendix C: Conversion, Unit, and Notation Tables C-l
Appendix D: Helpful Mathematical Relationships D-l
References R-l
Index I-l
|
any_adam_object | 1 |
author | Kaiser, Kenneth L. |
author_facet | Kaiser, Kenneth L. |
author_role | aut |
author_sort | Kaiser, Kenneth L. |
author_variant | k l k kl klk |
building | Verbundindex |
bvnumber | BV019745389 |
callnumber-first | T - Technology |
callnumber-label | TK7867 |
callnumber-raw | TK7867.2 |
callnumber-search | TK7867.2 |
callnumber-sort | TK 47867.2 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 4050 |
classification_tum | ELT 242f |
ctrlnum | (OCoLC)54371721 (DE-599)BVBBV019745389 |
dewey-full | 621.382/24 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382/24 |
dewey-search | 621.382/24 |
dewey-sort | 3621.382 224 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01518nam a2200397zc 4500</leader><controlfield tag="001">BV019745389</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060704 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050322s2005 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004043571</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0849320879</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8493-2087-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54371721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019745389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7867.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382/24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4050</subfield><subfield code="0">(DE-625)157345:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 242f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaiser, Kenneth L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electromagnetic compatibility handbook</subfield><subfield code="c">Kenneth L. Kaiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Getr. Zählung</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic compatibility</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Verträglichkeit</subfield><subfield code="0">(DE-588)4138552-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektromagnetische Verträglichkeit</subfield><subfield code="0">(DE-588)4138552-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013072021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013072021</subfield></datafield></record></collection> |
id | DE-604.BV019745389 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:05:09Z |
institution | BVB |
isbn | 0849320879 |
language | English |
lccn | 2004043571 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013072021 |
oclc_num | 54371721 |
open_access_boolean | |
owner | DE-29T DE-91 DE-BY-TUM DE-573 DE-1043 DE-706 |
owner_facet | DE-29T DE-91 DE-BY-TUM DE-573 DE-1043 DE-706 |
physical | Getr. Zählung Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | CRC Press |
record_format | marc |
spelling | Kaiser, Kenneth L. Verfasser aut Electromagnetic compatibility handbook Kenneth L. Kaiser Boca Raton [u.a.] CRC Press 2005 Getr. Zählung Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Electromagnetic compatibility Handbooks, manuals, etc Elektromagnetische Verträglichkeit (DE-588)4138552-4 gnd rswk-swf Elektromagnetische Verträglichkeit (DE-588)4138552-4 s DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013072021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kaiser, Kenneth L. Electromagnetic compatibility handbook Electromagnetic compatibility Handbooks, manuals, etc Elektromagnetische Verträglichkeit (DE-588)4138552-4 gnd |
subject_GND | (DE-588)4138552-4 |
title | Electromagnetic compatibility handbook |
title_auth | Electromagnetic compatibility handbook |
title_exact_search | Electromagnetic compatibility handbook |
title_full | Electromagnetic compatibility handbook Kenneth L. Kaiser |
title_fullStr | Electromagnetic compatibility handbook Kenneth L. Kaiser |
title_full_unstemmed | Electromagnetic compatibility handbook Kenneth L. Kaiser |
title_short | Electromagnetic compatibility handbook |
title_sort | electromagnetic compatibility handbook |
topic | Electromagnetic compatibility Handbooks, manuals, etc Elektromagnetische Verträglichkeit (DE-588)4138552-4 gnd |
topic_facet | Electromagnetic compatibility Handbooks, manuals, etc Elektromagnetische Verträglichkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013072021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kaiserkennethl electromagneticcompatibilityhandbook |