Multiphase flow dynamics: 2 Thermal and mechanical interactions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Ausgabe: | 2. ed. |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 699 S. Ill., graph. Darst. |
ISBN: | 3540221077 |
Internformat
MARC
LEADER | 00000nam a22000008cc4500 | ||
---|---|---|---|
001 | BV019716077 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 050301s2005 gw ad|| |||| 00||| eng d | ||
020 | |a 3540221077 |9 3-540-22107-7 | ||
035 | |a (OCoLC)314512777 | ||
035 | |a (DE-599)BVBBV019716077 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-83 | ||
100 | 1 | |a Kolev, Nikolay Ivanov |d 1951- |e Verfasser |0 (DE-588)110653262 |4 aut | |
245 | 1 | 0 | |a Multiphase flow dynamics |n 2 |p Thermal and mechanical interactions |c Nikolay I. Kolev |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a XX, 699 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
773 | 0 | 8 | |w (DE-604)BV014569143 |g 2 |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043329&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013043329 |
Datensatz im Suchindex
_version_ | 1804133172415299584 |
---|---|
adam_text | NIKOLAY I. KOLEV MULTIPHASE FLOW DYNAMICS 2 THERMAL AND MECHANICAL
INTERACTIONS 2ND ED. WITH 81 FIGURES & SPRINGER TABLE OF CONTENTS 1 FLOW
REGIME TRANSITION CRITERIA 1 1.1 INTRODUCTION 1 1.2 POOL FLOW 3 1.3
ADIABATIC FLOWS 6 1.3.1 CHANNEL FLOW - VERTICAL PIPES 6 1.3.2 CHANNEL
FLOW - INCLINED PIPES 10 1.4. HEATED CHANNELS 18 1.5. POROUS MEDIA 19
1.6 PARTICLES IN FILM BOILING 20 1.7 ROD BUNDLES 21 NOMENCLATURE 23
REFERENCES 25 2 DRAG FORCES 27 2.1 INTRODUCTION 27 2.2 DRAG COEFFICIENT
FOR SINGLE BUBBLE 28 2.3 FAMILY OF PARTICLES IN CONTINUUM 32 2.4
DROPLETS-GAS 36 2.5. SOLID PARTICLES-GAS IN PRESENCE OF LIQUID. SOLID
PARTICLES-LIQUID IN PRESENCE OF A GAS 38 2.5.1 SOLID PARTICLES: FREE
PARTICLES REGIME 38 2.5.2 SOLID PARTICLES IN BUBBLY FLOW 40 2.5.3 SOLID
PARTICLES: DENSE PACKED REGIME 44 2.6. ANNULAR FLOW 49 2.7. INVERTED
ANNULAR FLOW 55 2.8. STRATIFIED FLOW IN HORIZONTAL OR INCLINED
RECTANGULAR CHANNELS 56 2.9. STRATIFIED FLOW IN HORIZONTAL OR INCLINED
PIPES 60 NOMENCLATURE 65 REFERENCES 68 3 FRICTION PRESSURE DROP 71 3.1
INTRODUCTION 71 3.2 SINGLE-PHASE FLOW 71 3.3 TWO-PHASE FLOW 74 3.4
THREE-DIMENSIONAL FLOW IN A POROUS STRUCTURE 79 3.5 HEATED CHANNELS 80
XII TABLE OF CONTENTS 3.6 THREE-PHASE FLOW 82 NOMENCLATURE 84 REFERENCES
86 4 DIFFUSION VELOCITIES FOR ALGEBRAIC SLIP MODELS 89 4.1 INTRODUCTION
89 4.2 DRAG AS A FUNCTION OF THE RELATIVE VELOCITY 90 4.2.1 WALL FORCE
NOT TAKEN INTO ACCOUNT 90 4.2.2 WALL FORCES TAKEN INTO ACCOUNT 94 4.3
TWO VELOCITY FIELDS 95 4.3.1 SINGLE BUBBLE TERMINAL VELOCITY 95 4.3.2
SINGLE PARTICLE TERMINAL VELOCITY 99 4.3.3 CROSS SECTION AVERAGED BUBBLE
RISE VELOCITY IN PIPES - DRIFT FLUX MODELS 100 4.3.4 CROSS SECTION
AVERAGED PARTICLE SINK VELOCITY IN PIPES - DRIFT FLUX MODELS 119 4.4
SLIP MODELS 122 4.5 THREE VELOCITY FIELDS- ANNULAR DISPERSED FLOW 124
4.6 THREE-PHASE FLOW 125 NOMENCLATURE 128 REFERENCES 130 5 ENTRAINMENT
IN ANNULAR TWO-PHASE FLOW 133 5.1 INTRODUCTION 133 5.2 SOME BASICS 134
5.3 CORRELATIONS 135 5.4 ENTRAINMENT INCREASE IN BOILING CHANNELS 143
5.5 SIZE OF THE ENTRAINED DROPLETS 144 NOMENCLATURE 146 REFERENCES 149 6
DEPOSITION IN ANNULAR TWO-PHASE FLOW 153 6.1 INTRODUCTION 153 6.2
ANALOGY BETWEEN HEAT AND MASS TRANSFER 153 6.3 FLUCTUATION MECHANISM IN
THE BOUNDARY LAYER 155 6.4 ZAICHWS THEORY 156 6.5 DEPOSITION
CORRELATIONS 157 NOMENCLATURE 161 REFERENCES 164 7 INTRODUCTION TO
FRAGMENTATION AND COALESCENCE 167 7.1 INTRODUCTION 167 7.2 GENERAL
REMARKS ABOUT FRAGMENTATION 170 7.3 GENERAL REMARKS ABOUT COALESCENCE
171 7.3.1 CONVERGING DISPERSE FIELD 171 7.3.2 ANALOGY TO THE MOLECULAR
KINETIC THEORY 172 TABLE OF CONTENTS XIII 7.4 SUPERPOSITION OF DIFFERENT
DROPLET COALESCENCE MECHANISMS 178 7.5 SUPERPOSITION OF DIFFERENT BUBBLE
COALESCENCE MECHANISMS 179 7.6 GENERAL REMARKS ABOUT PARTICLE SIZE
FORMATION IN PIPES 180 NOMENCLATURE 184 REFERENCES 186 8 ACCELERATION
INDUCED DROPLET AND BUBBLE FRAGMENTATION 189 8.1 CRITICAL WEBER NUMBER
189 8.2 FRAGMENTATION MODES 200 8.3 RELATIVE VELOCITY AFTER
FRAGMENTATION 203 8.4 BREAKUP TIME 207 8.5 PARTICLE PRODUCTION RATE
CORRELATIONS 214 8.5.1 VIBRATION BREAKUP 214 8.5.2 BAG BREAKUP 214 8.5.3
BAG AND STAMEN BREAKUP 216 8.5.4 SHEET STRIPPING AND WAVE CREST
STRIPPING FOLLOWING BY CATASTROPHIC BREAKUP 216 8.6 DROPLETS PRODUCTION
DUE TO HIGHLY ENERGETIC COLLISIONS 224 8.7 ACCELERATION INDUCED BUBBLE
FRAGMENTATION 226 NOMENCLATURE 230 REFERENCES 232 9 TURBULENCE INDUCED
PARTICLE FRAGMENTATION AND COALESCENCE 237 9.1. HOMOGENEOUS TURBULENCE
CHARACTERISTICS 237 9.2 REACTION OF A PARTICLE TO THE ACCELERATION OF
THE SURROUNDING CONTINUUM 241 9.3 REACTION OF PARTICLE ENTRAINED INSIDE
THE TURBULENT VORTEX - INERTIAL RANGE 243 9.4 STABILITY CRITERION FOR
BUBBLES IN CONTINUUM 244 9.5 TURBULENCE ENERGY DISSIPATION DUE TO THE
WALL FRICTION 248 9.6 TURBULENCE ENERGY DISSIPATION DUE TO THE RELATIVE
MOTION 250 9.7 BUBBLE COALESCENCE PROBABILITY 252 9.8 COALESCENCE
PROBABILITY OF SMALL DROPLETS 257 NOMENCLATURE 258 REFERENCES 260 10
LIQUID AND GAS JET DISINTEGRATION 263 10.1 LIQUID JET DISINTEGRATION IN
POOLS 263 10.2 BOUNDARY OF DIFFERENT FRAGMENTATION MECHANISMS 266 10.3
SIZE OF THE LIGAMENTS 268 10.4 UNBOUNDED INSTABILITY CONTROLLING JET
FRAGMENTATION 269 10.4.1 NO AMBIENT INFLUENCE 269 10.4.2 AMBIENT
INFLUENCE 270 10.4.3 JETS PRODUCING FILM BOILING IN THE AMBIENT LIQUID
273 10.4.4 AN ALTERNATIVE APPROACH 275 XIV TABLE OF CONTENTS 10.4.5 JETS
PENETRATING TWO-PHASE MIXTURES 276 10.4.6 PARTICLE PRODUCTION RATE 277
10.5. JET EROSION BY HIGH VELOCITY GAS ENVIRONMENT 277 10.6. JET
FRAGMENTATION IN PIPES 279 10.7. GAS JET DISINTEGRATION IN POOLS 280
NOMENCLATURE 283 REFERENCES 286 11 FRAGMENTATION OF MELT IN COOLANT 289
11.1 INTRODUCTION 289 11.2 VAPOR THICKNESS IN FILM BOILING 291 11.3
AMOUNT OF MELT SURROUNDED BY CONTINUOUS WATER 293 11.4 THERMO-MECHANICAL
FRAGMENTATION OF LIQUID METAL IN WATER 294 11.4.1 EXTERNAL TRIGGERS 295
11.4.2 EXPERIMENTAL OBSERVATIONS 300 11.4.3 THE MECHANISM OF THE THERMAL
FRAGMENTATION 306 11.5 PARTICLE PRODUCTION RATE DURING THE THERMAL
FRAGMENTATION 322 11.6 TANG S THERMAL FRAGMENTATION MODEL 324 11.7
YUEN S THERMAL FRAGMENTATION MODEL 327 11.8 OXIDATION 327 11.9
SUPERPOSITION OF THERMAL FRAGMENTATION 328 11.9.1 INERT GASES 328 11.9.2
COOLANT VISCOSITY INCREASE 329 11.9.3 SURFACTANTS 329 11.9.4 MELT
VISCOSITY 330 NOMENCLATURE 331 REFERENCES 334 12 NUCLEATION IN LIQUIDS
341 12.1 INTRODUCTION 341 12.2 NUCLEATION ENERGY, EQUATION OF KELVIN AND
LAPLACE 342 12.3 NUCLEUS CAPABLE TO GROW 344 12.4 SOME USEFUL FORMS OF
THE CLAUSIUS-CLAPEYRON EQUATION, MEASURES OF SUPERHEATING 345 12.5
NUCLEATION KINETICS 348 12.5.1 HOMOGENEOUS NUCLEATION 348 12.5.2
HETEROGENEOUS NUCLEATION 350 12.6 MAXIMUM SUPERHEAT 356 12.7 CRITICAL
MASS FLOW RATE IN SHORT PIPES, ORIFICES AND NOZZLES 360 12.8 NUCLEATION
IN THE PRESENCE OF NON-CONDENSABLE GASES 360 12.9 ACTIVATED NUCLEATION
SITE DENSITY - STATE OF THE ART 362 12.10. CONCLUSIONS AND
RECOMMENDATIONS 368 NOMENCLATURE 369 REFERENCES 371 TABLE OF CONTENTS XV
13 BUBBLE GROWTH IN SUPERHEATED LIQUID 375 13.1 INTRODUCTION 375 13.2
THE THERMALLY CONTROLLED BUBBLE GROWTH 376 13.3 THE MIKIC SOLUTION 379
13.4 HOW TO COMPUTE THE MASS SOURCE TERMS FOR THE AVERAGED CONSERVATION
EQUATIONS? 382 13.4.1 NON-AVERAGED MASS SOURCE TERMS 382 13.4.2 THE
AVERAGED MASS SOURCE TERMS 384 13.5. SUPERHEATED STEAM 385 13.6
DIFFUSION CONTROLLED EVAPORATION INTO MIXTURE OF GASES INSIDE THE BUBBLE
386 13.7 CONCLUSIONS 387 NOMENCLATURE 387 REFERENCES 390 APPENDIX 13.1
RADIUS OF A SINGLE BUBBLE IN A SUPERHEATED LIQUID AS A FUNCTION OF TIME
392 14 CONDENSATION OF A PURE STEAM BUBBLE IN A SUBCOOLED LIQUID 399
14.1 INTRODUCTION 399 14.2 STAGNANT BUBBLE 399 14.3 MOVING BUBBLE 401
14.4 NON-AVERAGED SOURCE TERMS 406 14.5 AVERAGED SOURCE TERMS 407 14.6
CHANGE OF THE BUBBLE NUMBER DENSITY DUE TO CONDENSATION 409 14.7 PURE
STEAM BUBBLE DRIFTING IN TURBULENT CONTINUOUS LIQUID 410 14.8
CONDENSATION FROM A GAS MIXTURE IN BUBBLES SURROUNDED BY SUBCOOLED
LIQUID 413 14.8.1 THERMALLY CONTROLLED COLLAPSE 413 14.8.2 DIFFUSION
CONTROLLED COLLAPSE 414 NOMENCLATURE 415 REFERENCES 419 15 BUBBLE
DEPARTURE DIAMETER 421 15.1 HOW ACCURATELY CAN WE PREDICT BUBBLE
DEPARTURE DIAMETER FOR BOILING? 421 15.2 MODEL DEVELOPMENT 423 15.3
COMPARISON WITH EXPERIMENTAL DATA 429 15.4 SIGNIFICANCE 432 15.5 SUMMARY
AND CONCLUSIONS 433 NOMENCLATURE 434 REFERENCES 435 16 HOW ACCURATELY
CAN WE PREDICT NUCLEATE BOILING? 439 16.1 INTRODUCTION 439 16.2 NEW
PHENOMENOLOGICAL MODEL FOR NUCLEATE POOL BOILING 444 16.2.1 BASIC
ASSUMPTIONS 444 XVI TABLE OF CONTENTS 16.2.2 PROPOSED MODEL 446 16.3
DATA COMPARISON 448 16.4 SYSTEMATIC INSPECTION OF ALL THE USED
HYPOTHESES 452 16.5 SIGNIFICANCE 453 16.6 CONCLUSIONS 453 NOMENCLATURE
454 REFERENCES 456 APPENDIX 16.1 STATE OF THE ART OF NUCLEATE POOL
BOILING MODELING 459 APPENDIX 16.2 SOME EMPIRICAL CORRELATIONS FOR
NUCLEATE BOILING 465 17 HETEROGENEOUS NUCLEATION AND FLASHING IN
ADIABATIC PIPES 467 17.1 INTRODUCTION 467 17.2 BUBBLES GENERATED DUE TO
NUCLEATION AT THE WALL 468 17.3 BUBBLE GROWTH IN THE BULK 469 17.4
BUBBLE FRAGMENTATION AND COALESCENCE 470 17.5 FILM FLASHING BUBBLE
GENERATION IN ADIABATIC PIPE FLOW 471 17.6 VERIFICATION OF THE MODEL 473
17.9 SIGNIFICANCE AND CONCLUSIONS 483 NOMENCLATURE 484 REFERENCES 486 18
BOILING OF SUBCOOLED LIQUID 489 18.1 INTRODUCTION 489 18.2 INITIATION OF
VISIBLE BOILING ON THE HEATED SURFACE 489 18.3 LOCAL EVAPORATION AND
CONDENSATION 490 18.3.1 RELAXATION THEORY 490 18.3.2 BOUNDARY LAYER
TREATMENT 493 NOMENCLATURE 495 REFERENCES 497 19 NATURAL CONVECTION FILM
BOILING 499 19.1 MINIMUM FILM BOILING TEMPERATURE 499 19.2 FILM BOILING
IN HORIZONTAL UPWARDS-ORIENTED PLATES 500 19.3 HORIZONTAL CYLINDER 502
19.4 SPHERE 502 NOMENCLATURE 502 REFERENCES 504 20 FORCED CONVECTION
BOILING 505 20.1 CONVECTIVE BOILING OF SATURATED LIQUID 505 20.2 FORCED
CONVECTION FILM BOILING 507 20.2.1 TUBES 507 20.2.2 ANNULAR CHANNEL 510
20.2.3 TUBES AND ANNULAR CHANNELS 511 20.2.4 VERTICAL FLOW AROUND ROD
BUNDLES 511 20.3 TRANSITION BOILING 512 TABLE OF CONTENTS XVII 20.4
CRITICAL HEAT FLUX 513 20.4.1 THE HYDRODYNAMIC STABILITY THEORY OF FREE
CONVECTION DNB 514 20.4.2 FORCED CONVECTION DNB AND DO CORRELATIONS 517
20.4.3 THE 1995 LOOK-UP TABLE 521 NOMENCLATURE 521 REFERENCES 523 21
FILM BOILING ON VERTICAL PLATES AND SPHERES 527 21.1 PLATE 527 21.1.1
INTRODUCTION 527 21.1.2 STATE OF THE ART 528 21.1.3 PROBLEM DEFINITION
529 21.1.4 SIMPLIFYING ASSUMPTIONS 530 21.1.5 ENERGY BALANCE AT THE
VAPOR-LIQUID INTERFACE, VAPOR FILM THICKNESS, AVERAGE HEAT TRANSFER
COEFFICIENT 533 21.1.6 ENERGY BALANCE OF THE LIQUID BOUNDARY LAYER,
LAYER THICKNESS RATIO 537 21.1.7 AVERAGED HEAT FLUXES 540 21.1.8 EFFECT
OF THE INTERFACIAL DISTURBANCES 542 21.1.9 COMPARISON OF THE THEORY WITH
THE RESULTS OF OTHER AUTHORS 543 21.1.10 VERIFICATION USING THE
EXPERIMENTAL DATA 545 21.1.11 CONCLUSIONS 546 21.1.12 PRACTICAL
SIGNIFICANCE 546 21.2 SPHERE 547 21.2.1 INTRODUCTION 547 21.2.2 PROBLEM
DEFINITION 547 21.2.3 SOLUTION METHOD 547 21.2.4 MODEL 548 21.2.5 DATA
COMPARISON 557 21.2.6 CONCLUSIONS 561 NOMENCLATURE 561 REFERENCES 564
APPENDIX 21.1 NATURAL CONVECTION AT VERTICAL PLATE 567 APPENDIX 22.2
PREDOMINANT FORCED CONVECTION ONLY AT VERTICAL PLATE 567 22 LIQUID
DROPLETS 569 22.1 SPONTANEOUS CONDENSATION OF PURE SUBCOOLED STEAM -
NUCLEATION 569 22.1.1 CRITICAL NUCLEATION SIZE 570 22.1.2 NUCLEATION
KINETICS, HOMOGENEOUS NUCLEATION 573 22.1.3 DROPLET GROWTH 575 22.1.4
SELF-CONDENSATION STOP 577 22.2 HEAT TRANSFER ACROSS DROPLET INTERFACE
WITHOUT MASS TRANSFER 578 22.3 DIRECT CONTACT CONDENSATION OF PURE STEAM
ON SUBCOOLED DROPLET 585 22.4 SPONTANEOUS FLASHING OF SUPERHEATED
DROPLET 587 22.5 EVAPORATION OF SATURATED DROPLETS IN SUPERHEATED GAS
591 XVIII TABLE OF CONTENTS 22.6 DROPLET EVAPORATION IN GAS MIXTURE 594
NOMENCLATURE 600 REFERENCES 601 23 HEAT AND MASS TRANSFER AT THE
FILM-GAS INTERFACE 605 23.1 GEOMETRICAL FILM-GAS CHARACTERISTICS 605
23.2 CONVECTIVE HEAT TRANSFER 607 23.2.1 GAS SIDE HEAT TRANSFER 608
23.2.2 LIQUID SIDE HEAT TRANSFER DUE TO CONDUCTION 611 23.2.3 LIQUID
SIDE HEAT CONDUCTION DUE TO TURBULENCE 613 23.3 SPONTANEOUS FLASHING OF
SUPERHEATED FILM 621 23.4 EVAPORATION OF SATURATED FILM IN SUPERHEATED
GAS 622 23.5 CONDENSATION OF PURE STEAM ON SUBCOOLED FILM 623 23.6
EVAPORATION OR CONDENSATION IN PRESENCE OF NON-CONDENSABLE GASES 624
NOMENCLATURE 626 REFERENCES 629 24 CONDENSATION AT COOLED WALLS 631 24.1
PURE STEAM CONDENSATION 631 24.1.1 ONSET OF THE CONDENSATION 631 24.1.2
CONDENSATION FROM STAGNANT STEAM {NUSSELT 1916) AT LAMINAR LIQUID FILM
632 24.1.3 CONDENSATION FROM STAGNANT STEAM AT TURBULENT LIQUID FILM
{GRIGUL 1942) 633 24.2. CONDENSATION FROM FORCED CONVECTION TWO-PHASE
FLOW AT LIQUID FILM... 634 24.2.1 DOWN FLOW OF VAPOR ACROSS HORIZONTAL
TUBES 634 24.2.2 COLLIER CORRELATION 635 24.2.3 BOYKO AND KRUJILIN
APPROACH 635 24.2.4 THE SHAH MODIFICATION OF THE BOYKO AND KRUJILIN
APPROACH 636 24.3 STEAM CONDENSATION FROM MIXTURE CONTAINING
NON-CONDENSING GASES.... 636 24.3.1 COMPUTATION OF THE MASS TRANSFER
COEFFICIENT 638 NOMENCLATURE 640 REFERENCES 642 25 DISCRETE ORDINATE
METHOD FOR RADIATION TRANSPORT IN MULTI-PHASE COMPUTER CODES 645 25.1
INTRODUCTION 645 25.1.1 DIMENSIONS OF THE PROBLEM 645 25.1.2 MICRO-
VERSUS MACRO-INTERACTIONS 646 25.1.3 THE RADIATION TRANSPORT EQUATION
(RTE) 646 25.2 DISCRETE ORDINATE METHOD 647 25.2.1 DISCRETIZATION OF THE
COMPUTATIONAL DOMAIN FOR THE DESCRIPTION OF THE FLOW 649 25.2.2 FINITE
VOLUME REPRESENTATION OF THE RADIATION TRANSPORT EQUATION... 650 25.2.3
BOUNDARY CONDITIONS 656 25.3 MATERIAL PROPERTIES 658 TABLE OF CONTENTS
XIX 25.3.1 SOURCE TERMS - EMISSION FROM HOT SURFACES WITH KNOWN
TEMPERATURE 658 25.3.2 SPECTRAL ABSORPTION COEFFICIENT OF WATER 659
25.3.3 SPECTRAL ABSORPTION COEFFICIENT OF WATER VAPOR AND OTHER GASES
663 25.4 AVERAGED PROPERTIES FOR SOME PARTICULAR CASES OCCURRING IN
MELT-WATER INTERACTION 663 25.4.1 SPHERICAL CAVITY OF GAS INSIDE A
MOLTEN MATERIAL 664 25.4.2 CONCENTRIC SPHERES OF WATER DROPLETS,
SURROUNDED BY VAPOR, SURROUNDED BY MOLTEN MATERIAL 665 25.4.3 CLOUDS OF
SPHERICAL PARTICLES OF RADIATING MATERIAL SURROUNDED BY A LAYER OF VAPOR
SURROUNDED BY WATER -LANZENBERGER S SOLUTION 669 25.4.4 CHAIN OF
INFINITE NUMBER OF WIGNER CELLS 685 25.4.5 APPLICATION OF LANZENBERGERS
S SOLUTION 686 NOMENCLATURE 687 REFERENCES 689 INDEX 691 26 VALIDATION
OF MULTI-PHASE FLOW MODELS (ON CD ATTACHED TO VOL. 1) 1 26.1
INTRODUCTION 3 26.2 MATERIAL RELOCATION - GRAVITATIONAL WAVES (2D) 10
26.2.1 U-TUBE BENCHMARKS 10 26.2.2 GRAVITATIONAL 2D WAVES 15 26.3 STEADY
STATE SINGLE-PHASE NOZZLE FLOW 16 26.4 PRESSURE WAVES - SINGLE PHASE 17
26.4.1 GAS IN A SHOCK TUBE 17 26.4.2 WATER IN A SHOCK TUBE 21 26.4.3
PRESSURE WAVE PROPAGATION IN A CYLINDER VESSEL WITH FREE SURFACE (2D) 22
26.5 2D: N2 EXPLOSION IN SPACE FILLED PREVIOUSLY WITH AIR 26 26.6 2D: N2
EXPLOSION IN SPACE WITH INTERNALS FILLED PREVIOUSLY WITH WATER ....28
26.7 FILM ENTRAINMENT IN PIPE FLOW 32 26.8 WATER FLASHING IN NOZZLE FLOW
34 26.9 PIPE BLOW-DOWN WITH FLASHING 38 26.9.1 SINGLE PIPE 38 26.9.2
COMPLEX PIPE NETWORK 42 26.10 BOILING, CRITICAL HEAT FLUX, POST-CRITICAL
HEAT FLUX HEAT TRANSFER 43 26.11 FILM BOILING 50 26.12 BEHAVIOR OF
CLOUDS OF COLD AND VERY HOT SPHERES IN WATER 52 26.13 EXPERIMENTS WITH
DYNAMIC FRAGMENTATION AND COALESCENCE 57 26.13.1 L14 EXPERIMENT 57
26.13.2 L20 AND L24 EXPERIMENTS 61 26.13.3 UNCERTAINTY IN THE PREDICTION
OF NON-EXPLOSIVE MELT-WATER INTERACTIONS 62 26.13.4 CONCLUSIONS 63 XX
TABLE OF CONTENTS 26.14 L28, L31 EXPERIMENT 64 26.15 PREMIX-13
EXPERIMENT 69 26.16 PREMIX 17 AND 18 EXPERIMENTS 75 26.17 RIT AND IKE
EXPERIMENTS 88 26.18 ASSESSMENT FOR DETONATION ANALYSIS 89 26.19
EXAMPLES OF 3D CAPABILITIES 90 26.19.1 CASE 1. RIGID BODY STEADY
ROTATION PROBLEM 90 26.19.2 CASE 2. PURE RADIAL SYMMETRIC FLOW 92
26.19.3 CASE 3. RADIAL-AZIMUTHAL SYMMETRIC FLOW 94 26.19.4 CASE 4.
SMALL-BREAK LOSS OF COOLANT 96 26.19.5 CASE 5. ASYMMETRIC STEAM-WATER
INTERACTION IN A VESSEL [65] 98 26.19.6 CASE 6. MELT RELOCATION IN A
PRESSURE VESSEL 102 26.20 GENERAL CONCLUSIONS 104 REFERENCES 104
|
any_adam_object | 1 |
author | Kolev, Nikolay Ivanov 1951- |
author_GND | (DE-588)110653262 |
author_facet | Kolev, Nikolay Ivanov 1951- |
author_role | aut |
author_sort | Kolev, Nikolay Ivanov 1951- |
author_variant | n i k ni nik |
building | Verbundindex |
bvnumber | BV019716077 |
ctrlnum | (OCoLC)314512777 (DE-599)BVBBV019716077 |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01124nam a22003018cc4500</leader><controlfield tag="001">BV019716077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050301s2005 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540221077</subfield><subfield code="9">3-540-22107-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314512777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019716077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolev, Nikolay Ivanov</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110653262</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase flow dynamics</subfield><subfield code="n">2</subfield><subfield code="p">Thermal and mechanical interactions</subfield><subfield code="c">Nikolay I. Kolev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 699 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014569143</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043329&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013043329</subfield></datafield></record></collection> |
id | DE-604.BV019716077 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:04:29Z |
institution | BVB |
isbn | 3540221077 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013043329 |
oclc_num | 314512777 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-83 |
physical | XX, 699 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
spelling | Kolev, Nikolay Ivanov 1951- Verfasser (DE-588)110653262 aut Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev 2. ed. Berlin [u.a.] Springer 2005 XX, 699 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier (DE-604)BV014569143 2 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043329&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kolev, Nikolay Ivanov 1951- Multiphase flow dynamics |
title | Multiphase flow dynamics |
title_auth | Multiphase flow dynamics |
title_exact_search | Multiphase flow dynamics |
title_full | Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev |
title_fullStr | Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev |
title_full_unstemmed | Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev |
title_short | Multiphase flow dynamics |
title_sort | multiphase flow dynamics thermal and mechanical interactions |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043329&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014569143 |
work_keys_str_mv | AT kolevnikolayivanov multiphaseflowdynamics2 |