Multiphase flow dynamics: 1 Fundamentals
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXV, 753 S. graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 3540221069 |
Internformat
MARC
LEADER | 00000nam a22000008cc4500 | ||
---|---|---|---|
001 | BV019716068 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 050301s2005 gw d||| |||| 00||| eng d | ||
020 | |a 3540221069 |9 3-540-22106-9 | ||
035 | |a (OCoLC)439468500 | ||
035 | |a (DE-599)BVBBV019716068 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-83 | ||
080 | |a 531/533 | ||
082 | 0 | |a 620.1/064 |2 22 | |
100 | 1 | |a Kolev, Nikolay Ivanov |d 1951- |e Verfasser |0 (DE-588)110653262 |4 aut | |
245 | 1 | 0 | |a Multiphase flow dynamics |n 1 |p Fundamentals |c Nikolay I. Kolev |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a XXXV, 753 S. |b graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Multiphase flow |x Mathematical models | |
773 | 0 | 8 | |w (DE-604)BV014569143 |g 1 |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043320&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013043320 |
Datensatz im Suchindex
_version_ | 1804133172390133760 |
---|---|
adam_text | NIKOLAY I. KOLEV MULTIPHASE FLOW DYNAMICS 1 FUNDAMENTALS 2ND ED. WITH
114 FIGURES AND CD-ROM FYJ. SPRINGER TABLE OF CONTENTS 1 MASS
CONSERVATION 1 1.1 INTRODUCTION 1 1.2 BASIC DEFINITIONS 2 1.3
NON-STRUCTURED AND STRUCTURED FIELDS 10 1.4 SLATTERY AND WHITAKER S
LOCAL SPATIAL AVERAGING THEOREM 10 1.5 GENERAL TRANSPORT EQUATION
{LEIBNITZ RULE) 13 1.6 LOCAL VOLUME-AVERAGED MASS CONSERVATION EQUATION
14 1.7 TIME AVERAGE 18 1.8 LOCAL VOLUME-AVERAGED COMPONENT CONSERVATION
EQUATIONS 20 1.9 LOCAL VOLUME- AND TIME-AVERAGED CONSERVATION EQUATIONS
22 1.10 CONSERVATION EQUATIONS FOR THE NUMBER DENSITY OF PARTICLES 27
1.11 IMPLICATION OF THE ASSUMPTION OF MONO-DISPERSITY IN A CELL 33
1.11.1 PARTICLE SIZE SPECTRUM AND AVERAGING 33 1.11.2 CUTTING OF THE
LOWER PART OF THE SPECTRUM DUE TO MASS TRANSFER 35 1.11.3 THE EFFECT OF
THE AVERAGING ON THE EFFECTIVE VELOCITY DIFFERENCE 37 1.12 STRATIFIED
STRUCTURE 38 1.13 FINAL REMARKS AND CONCLUSIONS 39 REFERENCES 41 2
MOMENTUMS CONSERVATION 45 2.1. INTRODUCTION 45 2.2. LOCAL
VOLUME-AVERAGED MOMENTUM EQUATIONS 46 2.2.1 SINGLE-PHASE MOMENTUM
EQUATIONS 46 2.2.2 INTERFACE FORCE BALANCE (MOMENTUM JUMP CONDITION) 46
2.2.3 LOCAL VOLUME AVERAGING OF THE SINGLE-PHASE MOMENTUM EQUATION
....54 2.3 REARRANGEMENT OF THE SURFACE INTEGRALS 56 2.4 LOCAL VOLUME
AVERAGE AND TIME AVERAGE 61 2.5 VISCOUS AND REYNOLDS STRESSES 62 2.6
NON-EQUAL BULK AND BOUNDARY LAYER PRESSURES 65 2.6.1 CONTINUOUS
INTERFACE 65 2.6.2 DISPERSED INTERFACE 82 2.7 WORKING FORM FOR DISPERSED
AND CONTINUOUS PHASE 92 2.8 GENERAL WORKING FORM FOR DISPERSED AND
CONTINUOUS PHASES 97 2.9 SOME PRACTICAL SIMPLIFICATIONS 99 2.10
CONCLUSION 103 APPENDIX 2.1 104 XXVIII TABLE OF CONTENTS APPENDIX 2.2
105 APPENDIX 2.3 106 REFERENCES 109 3 DERIVATIVES FOR THE EQUATIONS OF
STATE 115 3.1 INTRODUCTION 115 3.2 MULTI-COMPONENT MIXTURES OF MISCIBLE
AND NON-MISCIBLE COMPONENTS... 117 3.2.1 COMPUTATION OF PARTIAL
PRESSURES FOR KNOWN MASS CONCENTRATIONS, SYSTEM PRESSURE AND TEMPERATURE
119 3.2.2 PARTIAL DERIVATIVES OF THE EQUATION OF STATE P = P(P,T,C 2 , J
126 3.2.3 PARTIAL DERIVATIVES IN THE EQUATION OF STATE T = T{M,P,C 2 -
, WHERE CP = S,H,E 132 3.2.4 CHEMICAL POTENTIAL 142 3.2.5 PARTIAL
DERIVATIVES IN THE EQUATION OF STATE P = P(P,(P,C 2 . ) , WHERE
152 3.3 MIXTURE OF LIQUID AND MICROSCOPIC SOLID PARTICLES OF DIFFERENT
CHEMICAL SUBSTANCES 155 3.3.1 PARTIAL DERIVATIVES IN THE EQUATION OF
STATE P = P(P,T,C 2 , J 155 3.3.2 PARTIAL DERIVATIVES IN THE EQUATION OF
STATE T = T(P,(P,C 2 . J WHERE
156 3.4 SINGLE-COMPONENT EQUILIBRIUM FLUID 157 3.4.1 SUPERHEATED VAPOR
158 3.4.2 RECONSTRUCTION OF EQUATION OF STATE BY USING A LIMITED AMOUNT
OF DATA AVAILABLE 159 3.4.3 VAPOR-LIQUID MIXTURE IN THERMODYNAMIC
EQUILIBRIUM 167 3.4.4 LIQUID-SOLID MIXTURE IN THERMODYNAMIC EQUILIBRIUM
168 3.4.5 SOLID PHASE 168 APPENDIX 3.1 APPLICATION OF THE THEORY TO
STEAM-AIR MIXTURES 169 APPENDIX 3.2 USEFUL REFERENCES FOR COMPUTING
PROPERTIES OF SINGLE CONSTITUENTS 170 REFERENCES 173 4 ON THE VARIETY OF
NOTATIONS OF THE ENERGY CONSERVATION FOR SINGLE-PHASE FLOW 177 4.1
INTRODUCTION 178 4.2 MASS AND MOMENTUM CONSERVATION, ENERGY CONSERVATION
178 4.3 SIMPLE NOTATION OF THE ENERGY CONSERVATION EQUATION 179 4.4 THE
ENTROPY 180 4.5 EQUATION OF STATE 181 4.6 VARIETY OF NOTATION OF THE
ENERGY CONSERVATION PRINCIPLE 182 4.6.1 TEMPERATURE 182 4.6.2 SPECIFIC
ENTHALPY 182 TABLE OF CONTENTS XXIX 4.7 SUMMARY OF DIFFERENT NOTATIONS
183 4.8 THE EQUIVALENCE OF THE CANONICAL FORMS 184 4.9 EQUIVALENCE OF
THE ANALYTICAL SOLUTIONS 188 4.10 EQUIVALENCE OF THE NUMERICAL
SOLUTIONS? 188 4.10.1 EXPLICIT FIRST ORDER METHOD OF CHARACTERISTICS 188
4.10.2 THE PERFECT GAS SHOCK TUBE: BENCHMARK FOR NUMERICAL METHODS 190
4.11 INTERPENETRATING FLUIDS 199 4.12 SUMMARY OF DIFFERENT NOTATIONS FOR
INTERPENETRATING FLUIDS 205 APPENDIX 4.1 ANALYTICAL SOLUTION OF THE
SHOCK TUBE PROBLEM 207 APPENDIX 4.2 ACHIEVABLE ACCURACY OF THE
DONOR-CELL METHOD FOR SINGLE-PHASE FLOWS 211 REFERENCES 214 5 FIRST AND
SECOND LAWS OF THE THERMODYNAMICS 217 5.1 INTRODUCTION 217 5.2
INSTANTANEOUS LOCAL VOLUME AVERAGE ENERGY EQUATIONS 220 5.3 DALTON AND
FICK S LAWS, CENTER OF MASS MIXTURE VELOCITY, CALORIC MIXTURE PROPERTIES
228 5.4 ENTHALPY EQUATION 230 5.5 INTERNAL ENERGY EQUATION 235 5.6
ENTROPY EQUATION 235 5.7 LOCAL VOLUME- AND TIME-AVERAGED ENTROPY
EQUATION 238 5.8 LOCAL VOLUME- AND TIME-AVERAGED INTERNAL ENERGY
EQUATION 244 5.9 LOCAL VOLUME- AND TIME-AVERAGED SPECIFIC ENTHALPY
EQUATION 246 5.10 NON-CONSERVATIVE AND SEMI-CONSERVATIVE FORMS OF THE
ENTROPY EQUATION 248 5.11 COMMENTS ON THE SOURCE TERMS IN THE MIXTURE
ENTROPY EQUATION 250 5.12 VISCOUS DISSIPATION 256 5.13 TEMPERATURE
EQUATION 260 5.14 SECOND LAW OF THE THERMODYNAMICS 264 5.15 MIXTURE
VOLUME CONSERVATION EQUATION 265 5.16 LINEARIZED FORM OF THE SOURCE TERM
FOR THE TEMPERATURE EQUATION 271 5.17 INTERFACE CONDITIONS 279 5.18
LUMPED PARAMETER VOLUMES 281 5.19 FINAL REMARKS 282 REFERENCES 282 6
SOME SIMPLE APPLICATIONS OF THE MASS AND ENERGY CONSERVATION 285 6.1
INFINITE HEAT EXCHANGE WITHOUT INTERFACIAL MASS TRANSFER 285 6.2
DISCHARGE OF GAS FROM A VOLUME 287 6.3 INJECTION OF INERT GAS IN A
CLOSED VOLUME INITIALLY FILLED WITH INERT GAS ....290 6.4 HEAT INPUT IN
A GAS IN A CLOSED VOLUME 291 6.5 STEAM INJECTION IN A STEAM-AIR MIXTURE
292 6.6 CHEMICAL REACTION IN A GAS MIXTURE IN A CLOSED VOLUME 295 XXX
TABLE OF CONTENTS 6.7 HYDROGEN COMBUSTION IN AN INERT ATMOSPHERE 297
6.7.1 SIMPLE INTRODUCTION TO COMBUSTION KINETICS 297 6.7.2 IGNITION
TEMPERATURE AND IGNITION CONCENTRATION LIMITS 299 6.7.3 DETONABILITY
CONCENTRATION LIMITS 301 6.7.4 THE HEAT RELEASE DUE TO COMBUSTION 301
6.7.5 EQUILIBRIUM DISSOCIATION 303 6.7.6 SOURCE TERMS OF THE ENERGY
CONSERVATION OF THE GAS PHASE 308 6.7.7 TEMPERATURE AND PRESSURE CHANGES
IN A CLOSED CONTROL VOLUME; ADIABATIC TEMPERATURE OF THE BURNED GASES
310 REFERENCES...., 315 7 EXERGY OF MULTI-PHASE MULTI-COMPONENT SYSTEMS
317 7.1 INTRODUCTION 317 7.2 THE PSEUDO-EXERGY EQUATION FOR SINGLE-FLUID
SYSTEMS 317 7.3 THE FUNDAMENTAL EXERGY EQUATION 319 7.3.1 THE EXERGY
DEFINITION IN ACCORDANCE WITH REYNOLDS AND PERKINS 319 7.3.2 THE EXERGY
DEFINITION IN ACCORDANCE WITH GOUY (L ENERGIE UTILISABLE, 1889) 320
7.3.3 THE EXERGY DEFINITION APPROPRIATE FOR ESTIMATION OF THE VOLUME
CHANGE WORK 322 7.3.4 THE EXERGY DEFINITION APPROPRIATE FOR ESTIMATION
OF THE TECHNICAL WORK 323 7.4 SOME INTERESTING CONSEQUENCES OF THE
FUNDAMENTAL EXERGY EQUATION 323 7.5 JUDGING THE EFFICIENCY OF A HEAT
PUMP AS AN EXAMPLE OF APPLICATION OF THE EXERGY 325 7.6 THREE-FLUID
MULTI-COMPONENT SYSTEMS 327 7.7 PRACTICAL RELEVANCE 330 REFERENCES 331 8
ONE-DIMENSIONAL THREE-FLUID FLOWS 333 8.1 SUMMARY OF THE LOCAL VOLUME-
AND TIME-AVERAGED CONSERVATION EQUATIONS 333 8.2 TREATMENT OF THE FIELD
PRESSURE GRADIENT FORCES 337 8.2.1 DISPERSED FLOWS 337 8.2.2 STRATIFIED
FLOW 337 8.3 PIPE DEFORMATION DUE TO TEMPORAL PRESSURE CHANGE IN THE
FLOW 338 8.4 SOME SIMPLE CASES 339 8.5 SLIP MODEL - TRANSIENT FLOW 347
8.6 SLIP MODEL - STEADY STATE. CRITICAL MASS FLOW RATE 352 8.7 FORCES
ACTING ON THE PIPES DUE TO THE FLOW - THEORETICAL BASICS 359 8.8 RELIEF
VALVES 367 8.8.1 INTRODUCTION 367 8.8.2 VALVE CHARACTERISTICS, MODEL
FORMULATION 367 8.8.3 ANALYTICAL SOLUTION 372 8.8.4 FITTING THE
PIECEWISE SOLUTION ON TWO KNOWN POSITION - TIME POINTS 374 8.8.5 FITTING
THE PIECEWISE SOLUTION ON KNOWN VELOCITY AND POSITION FORA GIVEN TIME
376 TABLE OF CONTENTS XXXI 8.8.6 IDEALIZED VALVE CHARACTERISTICS 377
8.8.7 RECOMMENDATIONS FOR THE APPLICATION OF THE MODEL IN SYSTEM
COMPUTER CODES 380 8.8.8 SOME ILLUSTRATIONS OF THE VALVE PERFORMANCE
MODEL 383 8.8.9 NOMENCLATURE FOR SECTION 8.8 389 8.9 PUMP MODEL 391
8.9.1 VARIABLES DEFINING THE PUMP BEHAVIOR 391 8.9.2 THEORETICAL BASICS
394 8.9.3 SUTER DIAGRAM 402 8.9.4 COMPUTATIONAL PROCEDURE 410 8.9.5
CENTRIFUGAL PUMP DRIVE MODEL 411 8.9.6 EXTENSION OF THE THEORY TO
MULTI-PHASE FLOW 411 REFERENCES 416 9 DETONATION WAVES CAUSED BY
CHEMICAL REACTIONS OR BY MELT-COOLANT INTERACTIONS 419 9.1 INTRODUCTION
419 9.2 SINGLE-PHASE THEORY 421 9.2.1 CONTINUUM SOUNDWAVES {LAPLACE) 421
9.2.2 DISCONTINUUM SHOCK WAVES {RANKINE-HUGONIOT) 422 9.2.3 THE LANDAU
AND LIFTSHITZ ANALYTICAL SOLUTION FOR DETONATION IN PERFECT GASES 427
9.2.4 NUMERICAL SOLUTION FOR DETONATION IN CLOSED PIPES 431 9.3
MULTI-PHASE FLOW 434 9.3.1 CONTINUUM SOUND WAVES 434 9.3.2 DISCONTINUUM
SHOCK WAVES 436 9.3.3 MELT-COOLANT INTERACTION DETONATIONS 438 9.3.4
SIMILARITY TO AND DIFFERENCES FROM THE YUEN AND THEOFANOUS FORMALISM 444
9.3.5 NUMERICAL SOLUTION METHOD 444 9.4 DETONATION WAVES IN WATER MIXED
WITH DIFFERENT MOLTEN MATERIALS 445 9.4.1 UO 2 WATER SYSTEM 446 9.4.2
EFFICIENCIES 451 9.4.3 THE MAXIMUM COOLANT ENTRAINMENT RATIO 454 9.5
CONCLUSIONS 455 9.6 PRACTICAL SIGNIFICANCE 458 APPENDIX 9.1 SPECIFIC
HEAT CAPACITY AT CONSTANT PRESSURE FOR URANIA AND ALUMINA 458 REFERENCES
459 10 CONSERVATION EQUATIONS IN GENERAL CURVILINEAR COORDINATE SYSTEMS
463 10.1 INTRODUCTION 463 10.2 FIELD MASS CONSERVATION EQUATIONS 464
XXXII TABLE OF CONTENTS 10.3 MASS CONSERVATION EQUATIONS FOR COMPONENTS
INSIDE THE FIELD - CONSERVATIVE FORM 467 10.4 FIELD MASS CONSERVATION
EQUATIONS FOR COMPONENTS INSIDE THE FIELD - NON-CONSERVATIVE FORM 470
10.5. PARTICLES NUMBER CONSERVATION EQUATIONS FOR EACH VELOCITY FIELD
470 10.6 FIELD ENTROPY CONSERVATION EQUATIONS - CONSERVATIVE FORM 471
10.7 FIELD ENTROPY CONSERVATION EQUATIONS - NON-CONSERVATIVE FORM 472
10.8 IRREVERSIBLE POWER DISSIPATION CAUSED BY THE VISCOUS FORCES 473
10.9 THE NON-CONSERVATIVE ENTROPY EQUATION IN TERMS OF TEMPERATURE AND
PRESSURE ». 475 10.10 THE VOLUME CONSERVATION EQUATION 477 10.11 THE
MOMENTUM EQUATIONS 479 10.12 THE FLUX CONCEPT, CONSERVATIVE AND
SEMI-CONSERVATIVE FORMS 487 10.12.1 MASS CONSERVATION EQUATION 488
10.12.2 ENTROPY EQUATION 489 10.12.3 TEMPERATURE EQUATION 490 10.12.4
MOMENTUM CONSERVATION IN THE X-DIRECTION 491 10.12.5 MOMENTUM
CONSERVATION IN THE ^-DIRECTION 492 10.12.6 MOMENTUM CONSERVATION IN THE
Z-DIRECTION 493 10.13 CONCLUDING REMARKS 495 REFERENCES 495 11 TYPE OF
THE SYSTEM OF PDES 497 11.1 EIGENVALUES, EIGENVECTORS, CANONICAL FORM
497 11.2 PHYSICAL INTERPRETATION 500 11.2.1 EIGENVALUES AND PROPAGATION
VELOCITY OF PERTURBATIONS 500 11.2.2 EIGENVALUES AND PROPAGATION
VELOCITY OF HARMONIC OSCILLATIONS .... 501 11.2.3 EIGENVALUES AND
CRITICAL FLOW 502 REFERENCES 503 12 NUMERICAL SOLUTION METHODS FOR
MULTI-PHASE FLOW PROBLEMS 505 12.1 INTRODUCTION 505 12.2 FORMULATION OF
THE MATHEMATICAL PROBLEM 505 12.3 SPACE DISCRETIZATION AND LOCATION OF
THE DISCRETE VARIABLES 508 12.4 DISCRETIZATION OF THE MASS CONSERVATION
EQUATIONS 512 12.5 FIRST ORDER DONOR-CELL FINITE DIFFERENCE
APPROXIMATIONS 514 12.6 DISCRETIZATION OF THE CONCENTRATION EQUATIONS
516 12.7 DISCRETIZATION OF THE ENTROPY EQUATION 518 12.8 DISCRETIZATION
OF THE TEMPERATURE EQUATION 519 12.9. PHYSICAL SIGNIFICANCE OF THE
NECESSARY CONVERGENCE CONDITION 522 12.10. IMPLICIT DISCRETIZATION OF
MOMENTUM EQUATIONS 524 12.11 PRESSURE EQUATIONS FOR IVA2 AND IVA3
COMPUTER CODES 531 12.12 A NEWTON-TYPE ITERATION METHOD FOR MULTI-PHASE
FLOWS 535 12.13 INTEGRATION PROCEDURE: IMPLICIT METHOD 545 12.14 TIME
STEP AND ACCURACY CONTROL 547 12.15 HIGH ORDER DISCRETIZATION SCHEMES
FOR CONVECTION-DIFFUSION TERMS 548 TABLE OF CONTENTS XXXIII 12.15. 1
SPACE EXPONENTIAL SCHEME 548 12.15.2 HIGH ORDER UPWINDING 551 12.15.3
CONSTRAINED INTERPOLATION PROFILE (CIP) METHOD 554 12.16 PIPE NETWORKS:
SOME BASIC DEFINITIONS 561 12.16.1 PIPES 561 12.16.2 AXIS IN THE SPACE
563 12.16.3 DIAMETERS OF PIPE SECTIONS 564 12.16.4 REDUCTIONS 565
12.16.5 ELBOWS 565 12.16.6 CREATING A LIBRARY OF PIPES 566 12.16.7 SUB
SYSTEM NETWORK 567 12.16.8 DISCRETIZATION OF PIPES 568 12.16.9 KNOTS 568
APPENDIX 12.1 DEFINITIONS APPLICABLE TO DISCRETIZATION OF THE MASS
CONSERVATION EQUATIONS 570 APPENDIX 12.2 DISCRETIZATION OF THE
CONCENTRATION EQUATIONS 573 APPENDIX 12.3 HARMONIC AVERAGED DIFFUSION
COEFFICIENTS 576 APPENDIX 12.4. DISCRETIZED RADIAL MOMENTUM EQUATION 578
APPENDIX 12.5 THE A COEFFICIENTS FOREQ. (12.46) 584 APPENDIX 12.6
DISCRETIZATION OF THE ANGULAR MOMENTUM EQUATION 584 APPENDIX 12.7
DISCRETIZATION OF THE AXIAL MOMENTUM EQUATION 586 APPENDIX 12.8
ANALYTICAL DERIVATIVES FOR THE RESIDUAL ERROR OF EACH EQUATION WITH
RESPECT TO THE DEPENDENT VARIABLES 588 APPENDIX 12.9 SIMPLE INTRODUCTION
TO ITERATIVE METHODS FOR SOLUTION OF ALGEBRAIC SYSTEMS 592 REFERENCES
593 13 NUMERICAL METHODS FOR MULTI-PHASE FLOW IN CURVILINEAR COORDINATE
SYSTEMS599 13.1 INTRODUCTION 599 13.2 NODES, GRIDS, MESHES, TOPOLOGY -
SOME BASIC DEFINITIONS 601 13.3 FORMULATION OF THE MATHEMATICAL PROBLEM
602 13.4 DISCRETIZATION OF THE MASS CONSERVATION EQUATIONS 604 13.4.1
INTEGRATION OVER A FINITE TIME STEP AND FINITE CONTROL VOLUME 604 13.4.2
THE DONOR-CELL CONCEPT 607 13.4.3 TWO METHODS FOR COMPUTING THE FINITE
DIFFERENCE APPROXIMATIONS OF THE CONTRAVARIANT VECTORS AT THE CELL
CENTER 610 13.4.4 DISCRETIZATION OF THE DIFFUSION TERMS 612 13.5
DISCRETIZATION OF THE ENTROPY EQUATION 618 13.6 DISCRETIZATION OF THE
TEMPERATURE EQUATION 619 13.7 DISCRETIZATION OF THE PARTICLE NUMBER
DENSITY EQUATION 619 13.8 DISCRETIZATION OF THE X MOMENTUM EQUATION 620
13.9 DISCRETIZATION OF THE Y MOMENTUM EQUATION 622 13.10. DISCRETIZATION
OF THE Z MOMENTUM EQUATION 623 13.11 PRESSURE-VELOCITY COUPLING 624
XXXIV TABLE OF CONTENTS 13.12 STAGGERED X MOMENTUM EQUATION 629 APPENDIX
13.1 HARMONIC AVERAGED DIFFUSION COEFFICIENTS 641 APPENDIX 13.2
OFF-DIAGONAL VISCOUS DIFFUSION TERMS OF THE X MOMENTUM EQUATION 643
APPENDIX 13.3 OFF-DIAGONAL VISCOUS DIFFUSION TERMS OF THE Y MOMENTUM
EQUATION 647 APPENDIX 13.4 OFF-DIAGONAL VISCOUS DIFFUSION TERMS OF THE Z
MOMENTUM EQUATION 650 REFERENCES 653 APPENDIX 1 BRIEF INTRODUCTION TO
VECTOR ANALYSIS 657 APPENDIX 2 BASICS OF THE COORDINATE TRANSFORMATION
THEORY 687 INDEX 747 CHAPTER 14 OF VOLUME 1 AND CHAPTER 26 OF VOLUME 2
ARE AVAILABLE IN PDF FORMAT ON THE CD-ROM ATTACHED TO VOLUME 1. THE
SYSTEM REQUIREMENTS ARE WINDOWS 98 AND HIGHER. BOTH PDF FILES CONTAIN
LINKS TO COMPUTER ANIMATIONS. TO SEE THE ANIMA- TIONS, ONE DOUBLE CLICKS
ON THE ACTIVE LINKS CONTAINED INSIDE THE PDF DOCUMENTS. THE ANIMATIONS
ARE THEN DISPLAYED IN AN INTERNET BROWSER, SUCH MICROSOFT INTERNET
EXPLORER OR NETSCAPE. ALTERNATIVELY, GIF-FILE ANIMATIONS ARE ALSO
PROVIDED. 14 VISUAL DEMONSTRATION OF THE METHOD 1 14.1 MELT-WATER
INTERACTIONS 2 14.1.1 CASES 1 TO 4 2 14.1.2 CASES 5, 6 AND 7 8 14.1.3
CASES 8 TO 10 13 14.1.4 CASES 11 AND 12 24 14.1.5 CASE 13 27 14.1.6 CASE
14 28 14.2 PIPE NETWORKS 31 14.2.1 CASE 15 31 14.3 3D STEAM-WATER
INTERACTION 33 14.3.1 CASE 16 33 14.4 THREE DIMENSIONAL STEAM-WATER
INTERACTION IN PRESENCE OF NON- CONDENSABLE GASES ...34 14.4.1 CASE 17
34 14.5 THREE DIMENSIONAL STEAM PRODUCTION IN BOILING WATER REACTOR 36
14.5.1 CASE 18 36 REFERENCES 38 26 VALIDATION OF MULTI-PHASE FLOW MODELS
1 26.1 INTRODUCTION 3 26.2 MATERIAL RELOCATION - GRAVITATIONAL WAVES
(2D) 10 26.2.1 U-TUBE BENCHMARKS 10 TABLE OF CONTENTS XXXV 26.2.2
GRAVITATIONAL 2D WAVES 15 26.3 STEADY STATE SINGLE-PHASE NOZZLE FLOW 16
26.4 PRESSURE WAVES - SINGLE PHASE 17 26.4.1 GAS IN A SHOCK TUBE 17
26.4.2 WATER IN A SHOCK TUBE 21 26.4.3 PRESSURE WAVE PROPAGATION IN A
CYLINDER VESSEL WITH FREE SURFACE (2D) 22 26.5 2D: N 2 EXPLOSION IN
SPACE FILLED PREVIOUSLY WITH AIR 26 26.6 2D: N 2 EXPLOSION IN SPACE WITH
INTERNALS FILLED PREVIOUSLY WITH WATER ....28 26.7 FILM ENTRAINMENT IN
PIPE FLOW 32 26.8 WATER FLASHING IN NOZZLE FLOW 34 26.9 PIPE BLOW-DOWN
WITH FLASHING 38 26.9.1 SINGLE PIPE 38 26.9.2 COMPLEX PIPE NETWORK 42
26.10 BOILING, CRITICAL HEAT FLUX, POST-CRITICAL HEAT FLUX HEAT TRANSFER
43 26.11 FILM BOILING 50 26.12 BEHAVIOR OF CLOUDS OF COLD AND VERY HOT
SPHERES IN WATER 52 26.13 EXPERIMENTS WITH DYNAMIC FRAGMENTATION AND
COALESCENCE 57 26.13.1 L14 EXPERIMENT 57 26.13.2 L20 AND L24 EXPERIMENTS
61 26.13.3 UNCERTAINTY IN THE PREDICTION OF NON-EXPLOSIVE MELT-WATER
INTERACTIONS 62 26.13.4 CONCLUSIONS 63 26.14 L28, L31 EXPERIMENT 64
26.15 PREMIX-13 EXPERIMENT 69 26.16 PREMIX 17 AND 18 EXPERIMENTS 75
26.17 RIT AND IKE EXPERIMENTS 88 26.18 ASSESSMENT FOR DETONATION
ANALYSIS 89 26.19 EXAMPLES OF 3D CAPABILITIES 90 26.19.1 CASE 1. RIGID
BODY STEADY ROTATION PROBLEM 90 26.19.2 CASE 2. PURE RADIAL SYMMETRIC
FLOW 92 26.19.3 CASE 3. RADIAL-AZIMUTHAL SYMMETRIC FLOW 94 26.19.4 CASE
4. SMALL-BREAK LOSS OF COOLANT 96 26.19.5 CASE 5. ASYMMETRIC STEAM-WATER
INTERACTION IN A VESSEL [65] 98 26.19.6 CASE 6. MELT RELOCATION IN A
PRESSURE VESSEL 102 26.20 GENERAL CONCLUSIONS 104 REFERENCES 104
|
any_adam_object | 1 |
author | Kolev, Nikolay Ivanov 1951- |
author_GND | (DE-588)110653262 |
author_facet | Kolev, Nikolay Ivanov 1951- |
author_role | aut |
author_sort | Kolev, Nikolay Ivanov 1951- |
author_variant | n i k ni nik |
building | Verbundindex |
bvnumber | BV019716068 |
ctrlnum | (OCoLC)439468500 (DE-599)BVBBV019716068 |
dewey-full | 620.1/064 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/064 |
dewey-search | 620.1/064 |
dewey-sort | 3620.1 264 |
dewey-tens | 620 - Engineering and allied operations |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01260nam a22003498cc4500</leader><controlfield tag="001">BV019716068</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050301s2005 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540221069</subfield><subfield code="9">3-540-22106-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)439468500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019716068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">531/533</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/064</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolev, Nikolay Ivanov</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110653262</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase flow dynamics</subfield><subfield code="n">1</subfield><subfield code="p">Fundamentals</subfield><subfield code="c">Nikolay I. Kolev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 753 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphase flow</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014569143</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043320&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013043320</subfield></datafield></record></collection> |
id | DE-604.BV019716068 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:04:29Z |
institution | BVB |
isbn | 3540221069 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013043320 |
oclc_num | 439468500 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-83 |
physical | XXXV, 753 S. graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
spelling | Kolev, Nikolay Ivanov 1951- Verfasser (DE-588)110653262 aut Multiphase flow dynamics 1 Fundamentals Nikolay I. Kolev 2. ed. Berlin [u.a.] Springer 2005 XXXV, 753 S. graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Mathematisches Modell Multiphase flow Mathematical models (DE-604)BV014569143 1 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043320&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kolev, Nikolay Ivanov 1951- Multiphase flow dynamics Mathematisches Modell Multiphase flow Mathematical models |
title | Multiphase flow dynamics |
title_auth | Multiphase flow dynamics |
title_exact_search | Multiphase flow dynamics |
title_full | Multiphase flow dynamics 1 Fundamentals Nikolay I. Kolev |
title_fullStr | Multiphase flow dynamics 1 Fundamentals Nikolay I. Kolev |
title_full_unstemmed | Multiphase flow dynamics 1 Fundamentals Nikolay I. Kolev |
title_short | Multiphase flow dynamics |
title_sort | multiphase flow dynamics fundamentals |
topic | Mathematisches Modell Multiphase flow Mathematical models |
topic_facet | Mathematisches Modell Multiphase flow Mathematical models |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013043320&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014569143 |
work_keys_str_mv | AT kolevnikolayivanov multiphaseflowdynamics1 |