Random matrices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2004
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Pure and applied mathematics
142 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 1. Aufl. u.d.T.: Mehta, Madan L.: Random matrices and the statistical theory of energy levels |
Beschreibung: | XVIII, 688 S. graph. Darst. |
ISBN: | 0120884097 9780120884094 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV019697335 | ||
003 | DE-604 | ||
005 | 20120227 | ||
007 | t | ||
008 | 050215s2004 d||| |||| 00||| eng d | ||
020 | |a 0120884097 |9 0-12-088409-7 | ||
020 | |a 9780120884094 |9 978-0-12-088409-4 | ||
035 | |a (OCoLC)56987512 | ||
035 | |a (DE-599)BVBBV019697335 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-19 |a DE-29T |a DE-355 |a DE-703 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA188 | |
082 | 0 | |a 530.1/2 |2 20 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 155f |2 stub | ||
100 | 1 | |a Mehta, Madan Lal |d 1932-2006 |e Verfasser |0 (DE-588)13927667X |4 aut | |
245 | 1 | 0 | |a Random matrices |c Madan Lal Mehta |
250 | |a 3. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2004 | |
300 | |a XVIII, 688 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Pure and applied mathematics |v 142 | |
500 | |a 1. Aufl. u.d.T.: Mehta, Madan L.: Random matrices and the statistical theory of energy levels | ||
650 | 4 | |a Matrices aléatoires | |
650 | 7 | |a Mecânica estatística |2 larpcal | |
650 | 4 | |a Random matrices | |
650 | 0 | 7 | |a Energieniveau |0 (DE-588)4152225-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Matrix |0 (DE-588)4057624-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Matrix |0 (DE-588)4057624-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Energieniveau |0 (DE-588)4152225-4 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
830 | 0 | |a Pure and applied mathematics |v 142 |w (DE-604)BV010177228 |9 142 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013024987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013024987 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804133145818169344 |
---|---|
adam_text | CONTENTS
Preface to the Third Edition
......................................... xiii
Preface to the Second Edition
........................................ xv
Preface to the First Edition
......................................... xvii
Chapter
1.
Introduction
......................................... 1
1.1.
Random Matrices in Nuclear Physics
............................... 1
1.2.
Random Matrices in Other Branches of Knowledge
....................... 5
1.3.
A Summary of Statistical Facts about Nuclear Energy Levels
.................. 8
1.3.1.
Level Density
....................................... 8
1.3.2.
Distribution of Neutron Widths
.............................. 9
1.3.3.
Radiation and Fission Widths
............................... 9
1.3.4.
Level Spacings
....................................... 10
1.4.
Definition of a Suitable Function for the Study of Level Correlations
.............. 10
1.5.
Wigner Surmise
........................................... 13
1.6.
Electromagnetic Properties of Small Metallic Particles
...................... 15
1.7.
Analysis of Experimental Nuclear Levels
............................. 16
1.8.
The Zeros of The Riemann
Zeta
Function
............................. 16
1.9.
Things Worth Consideration, But Not Treated in This Book
................... 30
Chapter
2.
Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements
. 33
2.1.
Preliminaries
............................................. 33
2.2.
Time-Reversal
Invariance
...................................... 34
2.3.
Gaussian Orthogonal Ensemble
.................................. 36
2.4.
Gaussian Symplectic Ensemble
.................................. 38
2.5.
Gaussian Unitary Ensemble
.................................... 42
2.6.
Joint Probability Density Function for the Matrix Elements
................... 43
2.7.
Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts
...... 48
2.8.
Anti-Symmetric Hennitian Matrices
................................ 48
Summary of Chapter
2....................................... 49
vi
Contents
Chapters. Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues
... 50
3.1.
Orthogonal Ensemble
........................................ 50
3.2.
Symplectic Ensemble
........................................ 54
3.3.
Unitary Ensemble
.......................................... 56
3.4.
Ensemble of Anti-Symmetric Hermitian Matrices
........................ 59
3.5.
Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts
...... 60
3.6.
Random Matrices and Information Theory
............................ 60
Summary of Chapter
3....................................... 62
Chapter
4.
Gaussian Ensembles Level Density
............................. 63
4.1.
The Partition Function
....................................... 63
4.2.
The Asymptotic Formula for the Level Density. Gaussian Ensembles
............. 65
4.3.
The Asymptotic Formula for the Level Density. Other Ensembles
............... 67
Summary of Chapter
4....................................... 69
Chapters. Orthogonal, Skew-Orthogonal and Bi-Orthogonal Polynomials
............. 71
5.1.
Quaternions, Pfaffians, Determinants
............................... 72
5.2.
Average Value of
П
/Ui
f
(χ
jY· Orthogonal and Skew-Orthogonal Polynomials
........ 77
5.3.
Case
β
=2;
Orthogonal Polynomials
............................... 78
5.4.
Case
β
= 4;
Skew-Orthogonal Polynomials of Quaternion Type
................ 82
5.5.
Case
β
=
I
;
Skew-Orthogonal Polynomials of Real Type
.................... 84
5.6.
Average Value of
ГЈ
·_|
ф(хј.
y¡):
Bi-Orthogonal Polynomials
................ 88
5.7.
Correlation Functions
........................................ 89
5.8.
Proof of Theorem
5.7.1....................................... 93
5.8.1.
Case
β
= 2......................................... 93
5.8.2.
Case
β
= 4......................................... 94
5.8.3.
Case
β
= 1,
Even Number of Variables
......................... 96
5.8.4.
Case
β =
1,
Odd Number of Variables
.......................... 99
5.9.
Spacing Functions
.......................................... 101
5.10.
Determinantal Representations
................................... 101
5.11.
Integral Representations
...................................... 103
5.12.
Properties of the Zeros
....................................... 106
5.13.
Orthogonal Polynomials and the Riemann—Hubert Problem
................... 107
5.14.
A Remark (Balian)
......................................... 108
Summary of Chapter
5....................................... 108
Chapter
6.
Gaussian Unitary Ensemble
................................. 110
6.1.
Generalities
.............................................
Ill
6.1.1.
About Correlation and Cluster Functions
.........................
Ill
6.1.2.
About Level-Spacings
................................... 113
6.1.3.
Spacing Distribution
.................................... 118
6.1.4.
Correlations and Spacings
................................. 118
6.2.
The
л
-Point
Correlation Function
................................. 118
6.3.
Level Spacings
........................................... 122
6.4.
Several Consecutive Spacings
................................... 127
6.5.
Some Remarks
........................................... 134
Summary of Chapter
6....................................... 144
Contents
vii
Chapter?. Gaussian Orthogonal Ensemble
............................... 146
7.1.
Generalities
............................................. 147
7.2.
Correlation and Cluster Functions
................................. 148
7.3.
Level Spacings. Integration Over Alternate Variables
...................... 154
7.4.
Several Consecutive Spacings: n=2r
............................... 157
7.5.
Several Consecutive Spacings:
η
=
2r
— 1 ............................ 162
7.5.1.
Case/!
= 1......................................... 163
7.5.2.
Case n = 2r-
...................................... 164
7.6.
Bounds for the Distribution Function of the Spacings
...................... 168
Summary of Chapter
7....................................... 172
Chapter
8.
Gaussian Symplectic Ensemble
............................... 175
8.1.
A Quaternion Determinant
..................................... 175
8.2.
Correlation and Cluster Functions
................................. 177
8.3.
Level Spacings
........................................... 179
Summary of Chapter
8....................................... 181
Chapter
9.
Gaussian Ensembles: Brownian Motion Model
...................... 182
9.1.
Stationary Ensembles
........................................
1S2
9.2.
Nonstationary Ensembles
...................................... 183
9.3.
Some Ensemble Averages
..................................... 187
Summary of Chapter
9....................................... 189
Chapter
10.
Circular Ensembles
..................................... 191
10.1.
Orthogonal Ensemble
........................................ 192
10.2.
Symplectic Ensemble
........................................ 194
10.3.
Unitary Ensemble
.......................................... 196
10.4.
The Joint Probability Density of the Eigenvalues
......................... 197
Summary of Chapter
10....................................... 201
Chapter
11.
Circular Ensembles (Continued)
.............................. 203
11.1.
Unitary Ensemble. Correlation and Cluster Functions
...................... 203
11.2.
Unitary Ensemble. Level Spacings
................................. 205
11.3.
Orthogonal Ensemble. Correlation and Cluster Functions
.................... 207
11.3.1.
The Case
Λ
= 2w. Even
................................. 209
11.3.2.
The Case A
=
Ъп
+ 1,
Odd
............................... 210
11.3.3.
Conditions of Theorem
5.1.4............................... 211
11.3.4.
Correlation and Cluster Functions
............................ 212
11.4.
Orthogonal Ensemble. Level Spacings
............................... 213
11.5.
Symplectic Ensemble. Correlation and Cluster Functions
.................... 216
11.6.
Relation Between Orthogonal and Symplectic Ensembles
.................... 218
11.7.
Symplectic Ensemble. Level Spacings
............................... 219
11.8.
Brownian Motion Model
...................................... 221
Summary of Chapter
11....................................... 223
viii
___________Contents
Chapter
12.
Circular Ensembles. Thermodynamics
........................... 224
12.1.
The Partition Function
....................................... 224
12.2.
Thermodynamic Quantities
..................................... 227
12.3.
Statistical Interpretation of
U
and
С
................................ 229
12.4.
Continuum Model for the Spacing Distribution
.......................... 231
Summary of Chapter
12....................................... 236
Chapter
13.
Gaussian Ensemble of Anti-Symmetric Hermitian Matrices
............... 237
13.1.
Level Density. Correlation Functions
............................... 237
13.2.
Level Spacings
........................................... 240
13.2.1.
Central Spacings
...................................... 240
13.2.2.
Non-Central Spacings
................................... 242
Summary of Chapter
13....................................... 243
Chapter
14.
A Gaussian Ensemble of
Hermitian
Matrices With Unequal Real and Imaginary Parts
. 244
14.1.
Summary of Results. Matrix Ensembles From GOE to
GUE
and Beyond
........... 245
14.2.
Matrix Ensembles From GSE to
GUE
and Beyond
........................ 250
14.3.
Joint Probability Density for the Eigenvalues
........................... 254
14.3.1.
Matrices From GOE to
GUE
and Beyond
........................ 256
14.3.2.
Matrices From GSE to
GUE
and Beyond
........................ 260
14.4.
Correlation and Cluster Functions
................................. 263
Summary of Chapter
14....................................... 264
Chapter
15.
Matrices With Gaussian Element Densities But With No Unitary or Hermitian
Conditions Imposed
..................................... 266
15.1.
Complex Matrices
.......................................... 266
15.2.
Quaternion Matrices
........................................ 273
15.3.
Real Matrices
............................................ 279
15.4.
Determinants: Probability Densities
................................ 281
Summary of Chapter
15....................................... 286
Chapter
16.
Statistical Analysis of a Level-Sequence
.......................... 287
16.1.
Linear Statistic or the Number Variance
.............................. 290
16.2.
Least Square Statistic
........................................ 294
16.3.
Energy Statistic
........................................... 298
1
6.4.
Covariance of Two Consecutive Spacings
............................. 301
16.5.
The F-Statistic
............................................ 302
16.6.
The
Л
-Statistic
........................................... 303
16.7.
Statistics Involving Three and Four Level Correlations
...................... 303
16.8.
Other Statistics
........................................... 307
Summary of Chapter
16....................................... 308
Chapter
17.
Selberg s Integral and Its Consequences
.......................... 309
17.1.
Selberg Integral
.......................................... 309
17.2.
Selberg s Proof of Eq.
(17.1.3)................................... 311
Contents ix
17.3.
Aomoto s Proof of Eqs.
(17.1.4)
and
(17.1.3)........................... 315
17.4.
Other Averages
........................................... 318
17.5.
Other Forms of Selberg s Integral
................................. 318
17.6.
Some Consequences of Selberg s Integral
............................. 320
17.7.
Normalization Constant for the Circular Ensembles
....................... 323
17.8.
Averages With Laguerre or Hermite Weights
........................... 323
17.9.
Connection With Finite Reflection Groups
............................ 325
17.10.
A Second Generalization of the Beta Integral
........................... 327
17.11.
Some Related Difficult Integrals
.................................. 329
Summary to Chapter
17....................................... 334
Chapter
18.
Asymptotic Behaviour of
Ε ρ
(0.
л
)
by Inverse Scattering
................. 335
18.1.
Asymptotics of kn(t)
........................................ 336
18.2.
Asymptotics of Toeplitz Determinants
............................... 339
18.3.
Fredholm
Determinants and the Inverse Scattering Theory
................... 340
18.4.
Application of the
Geľfand-Levitan
Method
........................... 342
18.5.
Application of the Marchenko Method
.............................. 347
18.6.
Asymptotic Expansions
....................................... 350
Summary of Chapter
18....................................... 353
Chapter
19.
Matrix Ensembles and Classical Orthogonal Polynomials
................ 354
19.1.
Unitary Ensemble
.......................................... 355
19.2.
Orthogonal Ensemble
........................................ 357
19.3.
Symplectic Ensemble
........................................ 361
19.4.
Ensembles With Other Weights
.................................. 363
19.5.
Conclusion
.............................................. 363
Summary of Chapter
19....................................... 364
Chapter
20.
Level Spacing Functions
Ε β
i r. s
) ;
Inter-relations and Power Series Expansions
.... 365
20.1.
Three Sets of Spacing Functions; Their Inter-Relations
..................... 365
20.2.
Relation Between Odd and Even Solutions of Eq.
(20.1.13)................... 368
20.3.
Relation Between
/■ ](;.
.v) and F±(z.x)
.............................. 371
20.4.
Relation Between
FąIz.s)
and t±iz.s)
.............................. 375
20.5.
Power Series Expansions of
Epi
r. .v)
............................... 376
Summary of Chapter
20....................................... 381
Chapter
21.
Fredholm
Determinants and
Painlevé
Equations
...................... 382
21.1.
Introduction
............................................. 382
21.2.
Proof of Eqs.
(21.1.
11И21.
1.17) ................................. 385
21.3.
Differential Equations for the Functions
A, S
and
S
....................... 394
21.4.
Asymptotic Expansions lor Large Positive
r
........................... 396
21.5.
Fifth and Third
Painlevé
Transcendents
.............................. 400
21.6.
Solution of Eq.
(21.3.6)
for Larger
................................ 406
Summary of Chapter
21....................................... 408
Contents
Chapter
22. Moments
of the Characteristic Polynomial in the Three Ensembles of Random Matrices
409
22.1.
Introduction
............................................. 409
22.2.
Calculation of Ip(n. m; x)
..................................... 411
22.2.1. Iß
(n. m
;x) as a determinant
ora
Pfaffian of a matrix of size depending on
η
.... 412
22.2.2.
IaUi.m; x) as determinants of size depending on
m
.................. 415
22.3.
Special Case of the Gaussian Weight
............................... 419
22.4.
Average Value of
Π?1ι
detU,·/
-
ΛίΠ ^ι
d««;//
-
ЛГ1
..................
42]
Summary of Chapter
22....................................... 424
Chapter
23.
Hermitian Matrices Coupled in a Chain
.......................... 426
23.1.
General Correlation Function
.................................... 428
23.2.
Proof of Theorem
23.1.1...................................... 430
23.3.
Spacing Functions
.......................................... 435
23.4.
The Generating Function R(z .I : ...-.Zp.Ip)
.......................... 437
23.5.
The Zeros of the Bi-Orthogonal Polynomials
........................... 441
Summary of Chapter
23....................................... 448
Chapter
24.
Gaussian Ensembles. Edge of the Spectrum
........................ 449
24.1.
Level Density Near the Inflection Point
.............................. 450
24.2.
Spacing Functions
.......................................... 452
24.3.
Differential Equations:
Painlevé
.................................. 454
Summary to Chapter
24....................................... 458
Chapter
25.
Random Permutations. Circular Unitary Ensemble (CUE) and Gaussian Unitary
Ensemble
(GUE)
....................................... 460
25.1.
Longest Increasing Subsequences in Random Permutations
................... 460
25.2.
Random Permutations and the Circular Unitary Ensemble
.................... 461
25.3.
Robinson-Schensted Correspondence
............................... 463
25.4.
Random Permutations and
GUE
.................................. 468
Summary of Chapter
25....................................... 468
Chapter
26.
Probability Densities of the Determinants; Gaussian Ensembles
............. 469
26.1.
Introduction
............................................. 469
26.2.
Gaussian Unitary Ensemble
.................................... 473
26.2.1.
Mellin Transform of the PDD
.............................. 473
26.2.2.
Inverse Mellin Transforms
................................ 475
26.3.
Gaussian Symplectic Ensemble
.................................. 477
26.4.
Gaussian Orthogonal Ensemble
.................................. 480
26.5.
Gaussian Orthogonal Ensemble. Case ;i
=
2m
+ 1
Odd
..................... 482
26.6.
Gaussian Orthogonal Ensemble. Case
η
=
2m Even
....................... 483
Summary of Chapter
26....................................... 486
Chapter
27.
Restricted Trace Ensembles
................................. 487
27.1.
Fixed Trace Ensemble; Equivalence of Moments
......................... 487
27.2.
Probability Density of the Determinant
.............................. 490
Contents xi
27.3.
Bounded Trace
Ensembles..................................... 492
Summary of Chapter
27....................................... 493
Appendices
.................................................. 494
A.I. Numerical Evidence in Favor of Conjectures
1.2.1
and
1.2.2 .................. 494
A.2. The Probability Density of the Spacing» Resulting from a Random Superposition of
η
Unrelated Sequences of Energy Levels
.............................. 495
A.3. Some Properties of Hermitian, Unitary, Symmetric or Self-Dual Matrices
........... 498
A.
4.
Counting the Dimensions of Tpc and
Тп(.
............................ 499
A.5. An Integral Over the Unitary Group
................................ 500
A.6. The Minimum Value of
W
..................................... 504
АЛ.
Relation Between
R„,
Т„
and I-An;
26).............................. 506
A.8. Relation Between E(n;s), Fin: si and
/;(/;;
.v)
.......................... 510
A.9. The Limit of
Σο ^ ψ){χ)
.....................................
51()
АЛО.
The Limits of
Σο
~
P/(.v)<ŕ/(v)
................................. 511
A.ll.
The Fourier Transforms of the Two-Point Cluster Functions
................... 514
A.
12.
Some Applications of Gram s Formula
.............................. 516
A.
13.
Power Series Expansions of Eigenvalues, of Spheroidal Functions and of Various Probabilities
517
A.14. Numerical Tables of Ay(i).
/;;(л)
and Epitr.s) for fi =
1.2
¿md4
............... 521
A.15. Numerical Values of
fy
(0;
л).
Φ^(.ν)
and
;^(0:.ν)
for
β =
1.2
and
л-
< 3.7.......... 524
A.16. Proof of Eqs.
(21.1.1
1)-(21.
1.16), (24.3.11), (24.3.15)
and
(24.3.20)
Using a Compact Notation
525
A.
16.1.
Preliminaries
........................................ 525
A.16.2. The Sine Kernel: Definitions and Properties
....................... 527
A.16.3. The Airy Kernel
...................................... 531
АЛ7.
Use of Pfaffians in Some Multiple Integrals
............................ 536
A.
18.
Calculation of Certain Determinants
................................
53X
A.19. Power-Series Expansion of
/„,(«).
Eq.
(7.6.12).......................... 550
A.20. Proof of the Inequalities
(7.6.15).................................. 551
A.21. ProofofEqs.(10.1.11)and(10.2.11)
............................... 552
A.22. Proof of the Inequality
(12.1.5)................................... 553
A.23. Good s Proof of Eq.
(12.1.16)................................... 554
A.
24.
Some Recurrence Relations and Integrals Used in Chapter
14.................. 555
A.25. Normalization Integral, Eq.
(14.1.11)............................... 560
A.26. Another Normalization Integral, Eq.
(14.2.9)........................... 564
A.
27.
Joint Probability Density as a Determinant of a Self-Dual Quaternion Matrix. Section
14.4,
Eqs.
(14.4.2)
and
(14.4.5)...................................... 565
A.28. Verification of Eq.
(14.4.3)..................................... 569
A.29. The Limits of /yU. v) and D (x. y) as
Λ-
-»■
oc
........................ 572
A.30. Evaluation of the Integral
(15.1.9)
for Complex Matrices
.................... 573
A.31. A Few Remarks About the Eigenvalues of a Quaternion Real Matrix
.............. 577
A.32. Evaluation of the Integral Corresponding to
(15.2.9)....................... 579
A.33. Another Proof of Eqs.
(15.1.10)
and
(15.2.10) .......................... 582
A.34. Proof of Eq.
(15.2.38)........................................ 5X4
A.35. Partial
Triangulation
of a Matrix
.................................. 585
A.
36.
Average Number of Real Eigenvalues of a Real Gaussian Random Matrix
........... 587
A.
37.
Probability Density of the Eigenvalues of a Real Random Matrix When
к
of Its Eigenvalues
Are Real
............................................... 588
A.38. Variance of the Number Statistic. Section
16.1.......................... 594
A.38.1. Averages of the Powers of
и
via;; -Level Spaeings
.................... 595
A.39. Optimum Linear Statistic. Section
16.1.............................. 601
xii ______ _____ Contents
A.40.
Mean Value of
Δ.
Section
16.2................................... 603
A.41. Tables of Functions
Βρ(χλ,χ2)
and
PpUi
,.γτ)
for
/J
= 1
and
2................ 607
A.42. Sums aj^ and
a {r¡
for n =
1,2
and
3,
Section
20.5....................... 611
A.43. Values of
α ^ , ^1.
and«
ѓД
for Low Values of
j
and
я
................... 613
A.44. A Personal Recollection
...................................... 619
A.45. About
Painlevé
Transcendents
................................... 620
A.45.1. Six
Painlevé
Equations
.................................. 620
A.45.2. Lax Pairs
.......................................... 621
A.45.3. Hamiltonian Equations
.................................. 624
A.45.4. Confluences of the Hamiltonians and the
Painlevé
Equations
............. 627
A.46. Inverse Power Series Expansions of
<S,¡(
г
),
Α,Ατ),
В„(
г
),
etc
.................. 629
А.47.
Table of Values of«,, in Eq.
(21.4.6)
for Small Values of
и
................... 632
A.48. Some Remarks About the Numerical Computations
....................... 633
A.49. Convolution of Two Gaussian Kernels
............................... 634
A.50. Method of the Change of Variables. Wick s Theorem
...................... 636
A.51. Some Remarks About the Integral Hk.n),Eq.
(25.2.12)..................... 638
A.52.
Meijer
G-functions for Small and Large Values of the Variable
................. 640
A.52.
1.
Computation of the G-functions Near the Origin
.................... 640
A.52.
2.
G-functions for Large Values of the Variable
...................... 642
A.
53.
About Binary Quadratic Forms
................................... 642
Notes
..................................................... 645
References
.................................................. 655
Author Index
................................................. 680
Subject Index
................................................. 684
|
any_adam_object | 1 |
author | Mehta, Madan Lal 1932-2006 |
author_GND | (DE-588)13927667X |
author_facet | Mehta, Madan Lal 1932-2006 |
author_role | aut |
author_sort | Mehta, Madan Lal 1932-2006 |
author_variant | m l m ml mlm |
building | Verbundindex |
bvnumber | BV019697335 |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 |
callnumber-search | QA188 |
callnumber-sort | QA 3188 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
classification_tum | MAT 155f |
ctrlnum | (OCoLC)56987512 (DE-599)BVBBV019697335 |
dewey-full | 530.1/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/2 |
dewey-search | 530.1/2 |
dewey-sort | 3530.1 12 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02457nam a2200589 cb4500</leader><controlfield tag="001">BV019697335</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120227 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050215s2004 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120884097</subfield><subfield code="9">0-12-088409-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120884094</subfield><subfield code="9">978-0-12-088409-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56987512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019697335</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 155f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mehta, Madan Lal</subfield><subfield code="d">1932-2006</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13927667X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random matrices</subfield><subfield code="c">Madan Lal Mehta</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 688 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">142</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Aufl. u.d.T.: Mehta, Madan L.: Random matrices and the statistical theory of energy levels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices aléatoires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mecânica estatística</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieniveau</subfield><subfield code="0">(DE-588)4152225-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Energieniveau</subfield><subfield code="0">(DE-588)4152225-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">142</subfield><subfield code="w">(DE-604)BV010177228</subfield><subfield code="9">142</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013024987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013024987</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV019697335 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:04:04Z |
institution | BVB |
isbn | 0120884097 9780120884094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013024987 |
oclc_num | 56987512 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-355 DE-BY-UBR DE-703 DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-355 DE-BY-UBR DE-703 DE-83 DE-11 DE-188 |
physical | XVIII, 688 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Elsevier |
record_format | marc |
series | Pure and applied mathematics |
series2 | Pure and applied mathematics |
spelling | Mehta, Madan Lal 1932-2006 Verfasser (DE-588)13927667X aut Random matrices Madan Lal Mehta 3. ed. Amsterdam [u.a.] Elsevier 2004 XVIII, 688 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Pure and applied mathematics 142 1. Aufl. u.d.T.: Mehta, Madan L.: Random matrices and the statistical theory of energy levels Matrices aléatoires Mecânica estatística larpcal Random matrices Energieniveau (DE-588)4152225-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 s DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 1\p DE-604 Energieniveau (DE-588)4152225-4 s 2\p DE-604 Quantenmechanik (DE-588)4047989-4 s 3\p DE-604 Pure and applied mathematics 142 (DE-604)BV010177228 142 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013024987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mehta, Madan Lal 1932-2006 Random matrices Pure and applied mathematics Matrices aléatoires Mecânica estatística larpcal Random matrices Energieniveau (DE-588)4152225-4 gnd Quantenmechanik (DE-588)4047989-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Stochastische Matrix (DE-588)4057624-3 gnd |
subject_GND | (DE-588)4152225-4 (DE-588)4047989-4 (DE-588)4064324-4 (DE-588)4057624-3 |
title | Random matrices |
title_auth | Random matrices |
title_exact_search | Random matrices |
title_full | Random matrices Madan Lal Mehta |
title_fullStr | Random matrices Madan Lal Mehta |
title_full_unstemmed | Random matrices Madan Lal Mehta |
title_short | Random matrices |
title_sort | random matrices |
topic | Matrices aléatoires Mecânica estatística larpcal Random matrices Energieniveau (DE-588)4152225-4 gnd Quantenmechanik (DE-588)4047989-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Stochastische Matrix (DE-588)4057624-3 gnd |
topic_facet | Matrices aléatoires Mecânica estatística Random matrices Energieniveau Quantenmechanik Wahrscheinlichkeitsrechnung Stochastische Matrix |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013024987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010177228 |
work_keys_str_mv | AT mehtamadanlal randommatrices |