Environmental biotechnology:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 463 S. Ill., graph. Darst. |
ISBN: | 3527305858 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019646027 | ||
003 | DE-604 | ||
005 | 20060808 | ||
007 | t | ||
008 | 041229s2005 gw ad|| |||| 00||| eng d | ||
015 | |a 04,N29,0751 |2 dnb | ||
016 | 7 | |a 971591881 |2 DE-101 | |
020 | |a 3527305858 |c Gb. : ca. EUR 109.00 (freier Pr.), ca. CHF 161.00 (freier Pr.) |9 3-527-30585-8 | ||
024 | 3 | |a 9783527305858 | |
028 | 5 | 2 | |a 1130585 000 |
035 | |a (OCoLC)634819767 | ||
035 | |a (DE-599)BVBBV019646027 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-M49 |a DE-1102 |a DE-1046 |a DE-20 |a DE-634 |a DE-83 |a DE-526 | ||
084 | |a QR 525 |0 (DE-625)142044: |2 rvk | ||
084 | |a WF 9700 |0 (DE-625)148458: |2 rvk | ||
084 | |a WF 9795 |0 (DE-625)148469: |2 rvk | ||
084 | |a UMW 470f |2 stub | ||
084 | |a 570 |2 sdnb | ||
084 | |a CIT 980f |2 stub | ||
084 | |a UMW 535f |2 stub | ||
245 | 1 | 0 | |a Environmental biotechnology |c ed. by Hans-Joachim Jördening ... |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2005 | |
300 | |a XXIII, 463 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Umwelttechnik |0 (DE-588)4061650-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 0 | 1 | |a Umwelttechnik |0 (DE-588)4061650-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jördening, Hans-Joachim |e Sonstige |0 (DE-588)112088260 |4 oth | |
856 | 4 | 2 | |m KOBV Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012974804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-012974804 |
Datensatz im Suchindex
_version_ | 1812898661464539136 |
---|---|
adam_text |
IX
Contents
Preface V
List of Contributors XXI
1 Bacterial Metabolism in Wastewater Treatment Systems 1
Claudia Gallert and Josef Winter
1.1 Introduction 1
1.2 Decomposition of Organic Carbon Compounds in Natural
and Manmade Ecosystems 1
1.2.1 Basic Biology, Mass, and Energy Balance
of Aerobic Biopolymer Degradation 3
1.2.1.1 Mass and Energy Balance for Aerobic Glucose Respiration
and Sewage Sludge Stabilization 4
1.2.1.2 Mass and Energy Balance for Anaerobic Glucose Degradation
and Sewage Sludge Stabilization 6
1.2.2 General Considerations for the Choice of Aerobic
or Anaerobic Wastewater Treatment Systems 8
1.2.3 Aerobic or Anaerobic Hydrolysis of Biopolymers: Kinetic Aspects 8
1.2.4 Hydrolysis of Cellulose by Aerobic and Anaerobic Microorganisms:
Biological Aspects 9
1.2.5 Biomass Degradation in the Presence of Inorganic Electron Acceptors
and by an Anaerobic Food Chain 12
1.2.6 Roles of Molecular Hydrogen
and Acetate During Anaerobic Biopolymer Degradation 14
1.2.7 Anaerobic Conversion of Biopolymers to Methane and C02 15
1.2.7.1 Anaerobic Degradation of Carbohydrates in Wastewater 16
1.2.7.2 Anaerobic Degradation of Protein 18
1.2.7.3 Anaerobic Degradation of Neutral Fats and Lipids 20
1.2.8 Competition of Sulfate Reducers with Methanogens
in Methane Reactors 22
1.2.9 Amount and Composition of Biogas During Fermentation
of Carbohydrates, Proteins, and Fats 23
Environmental Biotechnology. Concepts and Applications. Edited, by H.-J. Jordening and J. Winter
Copyright © 2005 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 3-527-30585-8
X Contents
1.3 Nitrogen Removal During Wastewater Treatment 24
1.3.1 Ammonification 25
1.3.2 Nitrifkation of Am monia 25
1.3.2.1 Autotrophic Nitrification 25
1.3.2.2 Heterotrophic Nitrification 26
1.3.3 Denitrification: Nitrate Removal from Wastewater 27
1.3.4 Combined Nitrification and Denitrification 28
1.3.5 Anaerobic Ammonia Oxidation (Anammox®) 29
1.3.6 New N-removal Processes 30
1.4 Enhanced Biological Phosphate Removal 31
1.5 Biological Removal, Biotransformation, and Biosorption of Metal Ions
from Contaminated Wastewater 33
1.5.1 Sulfate Reduction and Metal Ion Precipitation 35
1.6 Aerobic and Anaerobic Degradation of Xenobiotics 36
1.7 Bioaugmentation in Wastewater Treatment Plants for Degradation
of Xenobiotics 39
References 41
2 Industrial Wastewater Sources and Treatment Strategies 49
Karl-Heinz Rosenwinkel, Ute Austermann-Haun, and Hartmut Meyer
2.1 Introduction and Targets 49
2.2 Wastewater Flow Fractions from Industrial Plants 50
2.2.1 Synopsis 50
2.2.2 Rainwater 50
2.2.3 Wastewater from Sanitary and Employee Facilities 5 J
2.2.4 Cooling Water 51
2.2.5 Wastewater from In-plant Water Preparation 52
2.2.6 Production Wastewater 52
2.3 Kinds and Impacts of Wastewater Components 52
2.3.1 Temperature 52
2.3.2 pH 53
2.3.3 Obstructing Components 53
2.3.4 Total Solids, Suspended Solids, Filterable Solids, Setdeable Solids 53
2.3.5 Organic Substances 53
2.3.6 Nutrient Salts (Nitrogen, Phosphoms, Sulfur) 54
2.3.7 Hazardous Substances 54
2.3.8 Corrosion-inducing Substances 55
2.3.9 Cleaning Agents, Disinfectants, and Lubricants 55
2.4 General Processes in Industrial Wastewater Treatment Concepts 56
2.4.1 General Information 56
2.4.2 Production-integrated Environmental Protection 56
2.4.3 Typical Treatment Sequence in a Wastewater Treatment Plant 57
2.5 Wastewater Composition and Treatment Strategies
in the Food Processing Industry 58
Contents XI
2.5.1 General Information 58
2.5.2 Sugar Factories 58
2.5.3 Starch Factories 61
2.5.4 Vegetable Oil and Shortening Production 63
2.5.5 Potato Processing Industry 65
2.5.6 Slaughterhouses 67
2.5.7 Dairy Industry 69
2.5.8 Fruit Juice and Beverage Industry 70
2.5.9 Breweries 72
2.5.10 Distilleries 73
References 75
3 Activated Sludge Process 79
Rolf Kayser
3.1 Process description and historical development 79
3.1.1 Single-stage process 79
3.1.2 Two-stage process 81
3.1.3 Single sludge carbon, nitrogen, and phosphorous removal 82
3.1.4 Sequencing batch reactor (SBR) process 83
3.1.5 Special developments 84
3.1.5.1 Pure oxygen-activated sludge process 84
3.1.5.2 Attached growth material in activated sludge aeration tanks 84
3.1.5.3 High-rate reactors 85
3.1.5.4 Membrane separation of mixed liquor 85
3.2 Technological and microbiological aspects 86
3.2.1 Wastewater characteristics 86
3.2.2 Removal of organic carbon 87
3.2.3 Nitrification 90
3.2.4 Denitrification 93
3.2.5 Phosphorus Removal 95
3.2.6 Environmental factors 96
3.2.6.1 Dissolved oxygen 96
3.2.6.2 Alkalinity and pH 96
3.2.6.3 Toxic substances 97
3.2.7 Properties of mixed liquor 98
3.3 Plant Configurations 99
3.3.1 Typical Tanks for mixing and aeration 99
3.3.2 Carbon removal processes 101
3.3.3 Nitrogen removal processes 101
3.3.3.1 Introduction 101
3.3.3.2 Pre-anoxic zone denitrification 102
3.3.3.3 Step-feed denitrifi cation process 104
3.3.3.4 Simultaneous nitrification and denitrification 106
3.3.3.5 Intermittent nitrification-Denitrification process 108
XII Contenti
3.3.3.6 Intermittent nitrification-denitrification processes
with intermittent wastewater feeding 110
3.3.3.7 Special processes for low COD/TKN ratio 111
3.3.3.8 Post-denitrification with external organic carbon 112
3.3.4 Interactions between the biological reactors
and the final clarifiers 113
3.4 Design procedure 114
References 116
4 Modeling of Aerobic Wastewater Treatment Processes 121
Mogens Henze
4.1 Introduction 121
4.2 Purpose of Modeling 121
4.3 Elements of Activated Sludge Models 122
4.3.1 Transport Processes and Treatment Plant Layout
4.3.1.1 Aeration 122
4.3.1.2 Components 123
4.3.1.3 Processes 123
4.3.1.4 Hydraulic Patterns 123
4.4 Presentation of Models 123
4.4.1 Mass Balances 124
4.4.2 Rates 124
4.4.3 Component Participation 124
4.5 The Activated Sludge Models Nos. 1, 2 and 3
(ASM1, ASM2, ASM3) 124
4.5.1 Activated Sludge Model No. 1 (ASM1) 125
4.5.2 Activated Sludge Model No. 2 (ASM2) 127
4.5.3 Activated Sludge Model No. 3 (ASM3) 127
4.6 Wastewater Characterization 128
4.7 Model Calibration 130
4.8 Computer Programs 131
4.9 Use of Models 131
References 133
5 High-rate Anaerobic Wastewater Treatment 135
Hans-Joachim Jordening and Klaus Buchholz
5.1 Introduction 135
5.2 Basic Principles 138
5.2.1 Biofilm Formation 138
5.2.2 Biofilm Characteristics 139
5.2.3 Kinetics and Mass Transfer
5.2.3.1 External Mass Transfer 140
5.2.3.2 Internal Mass Transfer 141
5.2.4 Support Characteristics 142
Contents
XIII
5.2.4.1 Stationary Fixed-film Reactors 142
5.2.4.2 Fluidized-bed Reactors 143
5.3 Reactor Design Parameters 145
5.3.1 Scale-up 145
5.3.2 Support 146
5.3.2.1 Stationary-bed Reactors 147
5.3.2.2 Fluidized-bed Reactors 149
5.3.3 Wastewater 150
5.3.3.1 Solids in Stationary Fixed-film Reactors 151
5.3.3.2 Solids in Fluidized-bed Reactors 151
5.3.4 Reactor Geometry and Technological Aspects 151
5.3.4.1 Fixed-bed Reactors 151
5.3.4.2 Fluidized-bed Reactors 152
Fluidization of the Support 153
Bed Height and Loss of Support 153
5.4 Reactor Operation 154
5.4.1 Start-up Procedure 154
5.4.2 Operation Results: Stationary Bed 155
5.4.3 Operational Results: Fluidized-bed Reactors 157
5.5 Conclusions 157
References 159
6 Modeling of Biogas Reactors 163
Herbert Markl
6.1 Introduction 163
6.1.1 Elements of the Mathematical Model 163
6.1.2 Scale-Up Strategy 165
6.2 Measuring Techniques 167
6.2.1 Online Measurement Using a Mass Spectrometer 167
6.2.2 Online Monitoring of Organic Substances
with High-Pressure Liquid Chromatography (HPLC) 269
6.3 Kinetics 170
6.3.1 Acetic Acid, Propionic Acid 276
6.3.2 Hydrogen Sulfide 179
6.3.3 Conclusions 279
6.4 Hydrodynamic and Liquid Mixing Behavior
of the Biogas Tower Reactor 181
6.4.1 M ixing of the Liquid Phase 182
6.4.1.1 Model A 185
6.4.1.2 Model В 186
6.4.2 Distribution of Biomass within the Reactor 188
6.4.2.1 Experiments 188
6.4.2.2 Mathematical Modeling 290
6.5 Mass Transport from the Liquid Phase to the Gas Phase 192
XIV I Contents
6.5.1
6.5.2
6.5.3
6.6
6.7
7
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.4.1
7.2A.2
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.2
7.3.2.1
7.3.2.2
7.4
8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.6.1
8.2.6.2
8.2.6.3
Liquid Phase 195
Gas Bubbles 295
Head Space 195
Influence of Hydrostatic Pressure on Biogas Production 197
Outlook 199
References 202
Aerobic Degradation of Recalcitrant Organic Compounds
by Microorganisms 203
Woljgang Fritsche and Martin Hojrichter
Introduction: Characteristics of Aerobic Microorganisms Capable
of Degrading Organic Pollutants 203
Principles of Bacterial Degradation 205
Typical Aerobic Degrading Bacteria 205
Growth-associated Degradation of Aliphatics 206
Diversity of Aromatic Compounds: Unity of Catabolic Processes 210
Extension of Degradative Capacities 212
Cometabolic Degradation of Organopollutants 212
Overcoming Persistent Pollutants by Cooperation Between Anaerobic
and Aerobic Bacteria 214
Degradative Capacities of Fungi 216
Metabolism of Organopollutants by Microfungi 216
Aliphatic Hydrocarbons 216
Aromatic Compounds 217
Degradative Capabilities of Basidiomycetous Fungi 220
The Ligninolytic Enzyme System 220
Degradation of Organopollutants 224
Conclusions 225
References 226
Principles of Anaerobic Degradation of Organic Compounds 229
Bernhard Schink
General Aspects of Anaerobic Degradation Processes 229
Key Reactions in Anaerobic Degradation
of Certain Organic Compounds 231
Degradation of Hydrocarbons 231
Degradation of Ether Compounds and Nonionic Surfactants 232
Degradation of N-Alkyl Compounds and Nitrilotriacetate 234
Degradation of S-Alkyl Compounds 235
Degradation of Ketones 235
Degradation of Aromatic Compounds 236
Benzoate and the Benzoyl-CoA Pathway 237
Phenol, Hydroxybenzoates, and Aniline 238
Cresols 240
8.2.6.4 Hydroquinone and Catechol 241
8.2.6.5 Resorcinol 241
8.2.6.6 Trihydroxybenzenes and Trihydroxybenzoates 242
8.2.6.7 Hydroxyhydroquinone, a New Important Intermediate 244
8.2.6.8 Aromatic Hydrocarbons 245
8.2.7 Degradation of Halogenated Organics 247
8.2.8 Degradation of Sulfonates 248
8.2.9 Degradation of Nitroorganics 248
8.3 Concluding Remarks 249
References 250
9 Soil Remediation and Disposal 259
Michael Koning, Karsten Hupe, and Rainer Stegmann
9.1 Introduction 259
9.2 Thermal Processes 260
9.2.1 Thermal Ex Situ Processes 260
9.2.2 Thermal In Situ Processes 263
9.2.3 Application of Thermal Processes 263
9.3 Chemical/Physical Processes 264
9.3.1 Chemical/Physical Ex Situ Processes 264
9.3.2 Chemical/Physical In Situ Processes 266
9.3.3 Application of Chemical/Physical Processes 267
9.4 Biological Processes 267
9.4.1 Biological Ex Situ Processes 268
9.4.2 Biological In Situ Processes 270
9.4.3 Application of Biological Processes 270
9.5 Disposal 271
9.6 Utilization of Decontaminated Soil 271
9.7 Conclusions 272
References 272
10 Bioremediation by the Heap Technique 275
Volker Schulz-Berendt
10.1 Introduction 275
10.2 Principles of the Heap Technique 276
10.3 Different Heap Techniques 279
10.4 Efficiency and Economy 282
References 284
11 Bioreactors 287
René H. Kleijntjens and Karel Ch. A. M. Luyben
11.1 Introduction 287
11.1.1 Contaminated Solid Waste Streams
(Soils, Sediments, and Sludges) 287
XVI Contents
11.1.2 Characteristics of Contaminated Solids 288
11.2 Bioreactors 289
11.2.1 Reactor Configurations 289
11.2.2 Diffusion of Contaminants out of Solid Particles 291
11.3 Slurry Bioreactors 292
11.3.1 Slurry Processing 292
11.3.2 Batch Operation 293
11.3.3 Full Scale Batch Processes 296
11.3.3.1 The DMT-Biodyn Process 296
11.3.3.2 The FORTEC Process 297
11.3.3.3 The OMH Process 297
11.3.3.4 The Huber Process 297
11.3.4 Sequential Batch Operation (Semicontinuous) 297
11.3.5 Continuous Operation 299
11.4 Solid-State Bioreactors 303
11.4.1 Process Configuration 303
11.4.2 Batch Operation: Composting 303
11.4.3 (Semi)Continuous Operation: The Rotating-drum Bioreactor 304
11.5 Comparison of Bioreactors 305
11.6 Conclusions and Outlook 306
11.6.1 Conclusions 306
11.6.2 Outlook 307
References 307
12 ln-situ Remediation 311
T. Held and H. Dörr
12.1 Introduction 311
12.2 Investigations 314
12.3 Remediation Technologies 316
12.3.1 General Considerations 326
12.3.2 Treatment of Unsaturated Soil (Bioventing) 317
12.3.3 Treatment of Saturated Soil 329
12.3.3.1 Hydraulic Circuits 329
12.3.3.2 Special Groundwater Wells 329
12.3.3.3 Biosparging and Bioslurping 320
12.3.3.4 Passive Technologies 322
12.3.3.5 Natural Attenuation 324
12.3.3.6 Evolving Technologies 326
12.4 Monitoring 328
12.5 Outlook 330
References 332
13
13.1
13.2
13.3
13.4
13.5
13.5.1
13.5.2
13.6
14
14.1
14.2
14.2.1
14.2.1.1
14.2.1.2
14.2.1.3
14.2.2
14.2.2.1
14.2.2.2
14.2.2.3
14.2.2.4
14.2.2.5
14.2.3
14.2.4
14.3
14.3.1
14.3.1.1
14.3.1.2
14.3.1.3
14.3.1.4
14.3.2
14.3.2.1
14.3.2.2
14.3.2.3
14.3.2.4
14.3.3
14.3.4
14.4
Composting of Organic Waste 333
Frank Schuchardt
Introduction 333
Waste Materials for Composting 334
Fundamentals of Composting Process 335
Composting Technologies 340
Composting Systems 342
Nonreactor Composting 342
Reactor Composting 346
Compost Quality 349
References 351
Anaerobic Fermentation of Wet
and Semidry Garbage Waste Fractions 355
Norbert Rilling
Introduction 355
Basic Aspects of Biological Waste Treatment 355
Biochemical Fundamentals of Anaerobic Fermentation 356
Hydrolytic and Acid-forming (Fermentative) Bacteria 357
Acetic Acid- and Hydrogen-forming (Acetogenic) Bacteria 357
Methane-forming (Methanogenic) Bacteria 357
Influence of Processing Conditions on Fermentation 358
Water Content 358
Temperature 358
pH Level 358
Redox Potential and Oxygen 358
Inhibitory Factors 359
Gas Quantity and Composition 359
Comparison of Aerobic and Anaerobic Waste Treatment 360
Processes of Anaerobic Waste Treatment 361
Procedures of Anaerobic Waste Fermentation 362
Delivery and Storage 363
Preprocessing 364
Anaerobic Fermentation 364
Post-processing 365
Process Engineering of Anaerobic Fermentation of Biowastes 365
Dry and Wet Fermentation 366
Continuous and Discontinuous Operation 367
Thermophilic and Mesophilic Operation 368
Agitation 368
Survey of Anaerobic Fermentation Processes 369
Feedstock for Anaerobic Digestion 369
Conclusions 372
References 373
XVIII Contents
15 Landfill Systems, Sanitary Landfilling of Solid Wastes,
and Long-term Problems with Leachate 375
Kai-Uwe Heyer and Rainer Stegmann
15.1 Introduction 375
15.2 Biochemical Processes in Sanitary Landfills 375
15.2.1 Aerobic Degradation Phases 376
15.2.2 Anaerobic Degradation Phases 376
15.2.3 Factors Affecting Leachate Composition 378
15.2.3.1 Waste Composition 380
15.2.3.2 Water Balance 380
15.2.3.3 Landfill Age 381
15.3 Sanitary Landfilling and Leachate Control Strategies 381
15.3.1 Leachate Problems in Landfills 381
15.3.2 Sanitary Landfilling and Legal Requirements 381
15.3.3 Control of Waste Input and Pretreatment before Deposition 382
15.3.4 Control of Water Input and Surface Sealing Systems 382
15.3.5 Control of Leachate Discharge into the Environment
and Base Sealing Systems 384
15.3.6 Leachate Treatment 386
15.3.7 Environmental Monitoring 387
15.4 Long-term Problems with Leachate 388
15.4.1 Lysimeter Tests in Landfill Simulation Reactors (LSR) 388
15.4.2 Prognosis of Periods of the Long-Term Time Course
of Emissions 390
15.5 Controlled Reduction of Leachate Emissions 391
15.5.1 In Situ Stabilization for the Closing and Aftercare of Landfills 392
15.5.2 Technical Methods for Water Infiltration and Effects on Leachate 392
15.5.3 Aerobic In Situ Stabilization and Effects
on Leachate Contamination 392
References 394
16 Sanitary Landfills: Long-term Stability
and Environmental Implications 395
Michael S. Switzenbaum
16.1 Introduction 395
16.2 Integrated Waste Management 397
16.3 Land Disposal 398
16.4 Leachate and Gas Management 403
16.5 Summary and Conclusions 406
References 407
Contents I XIX
17 Process Engineering of Biological Waste Gas Purification 409
Muthumbi Waweru, Veerle Herrygers, Herman Van Langenhove,
and Willy Verstraete
17.1 Introduction 409
17.2 Biological Waste Gas Purification Technology 409
17.2.1 General Characteristics 409
17.2.2 Technology Types 410
17.2.2.1 Biofilter 410
17.2.2.2 Biotriclding Filter 410
17.2.2.3 Bioscrubber 411
17.2.2.4 Membrane Bioreactor 411
17.3 Performance Parameters 411
17.3.1 Empty Bed Contact Time or True Contact Time 473
17.3.2 Surface Loading Rate (BA) 413
17.3.3 Mass Loading Rate (Bv) 414
17.3.4 Volumetric Loading Rate (vs) 414
17.3.5 Elimination Capacity (Ec) 414
17.3.6 Removal Efficiency (Re) 414
17.4 Characteristics of the Waste Gas Stream 415
17.5 Process Principles 417
17.5.1 Equilibrium Partitioning of the Pollutant 417
17.5.2 Diffusion 479
17.5.3 Microbial Degradation of the Pollutant 420
17.6 Reactor Performance 427
17.7 Reactor Control 424
17.8 Perspectives 424
Acknowledgments 425
References 425
18 Commercial Applications of Biological Waste Gas Purification 427
Derek E. Chitwood and Joseph S. Devinny
18.1 Background 427
18.1.1 Needs 427
18.1.2 Biological Treatment 428
18.1.3 Biofilters 429
18.1.4 Biotrickling Filters 432
18.1.5 Applications for Biological Systems 432
18.2 Applications 433
18.2.1 Soil Bed Biofilters (Bohn and Bohn, 1998) 433
18.2.2 Open Compost Biofilter for Treating Odors from a Livestock Facility
(Nicolai and Janni, 1998) 433
18.2.3 Open Bed Compost Biofilter for Wastewater Plant Odor Control
(Chitwood, 1999) 434
XX I Contents
18.2.4 Inorganic Biofilter for Odor Control
at a Wastewater Treatment Facility (Dechant et al., 1999) 435
18.2.5 Biofilter Treating Gasoline Vapor at a Soil Vapor Extraction Site
(Wright ct al., 1997) 435
18.2.6 Biofilter Treating VOC Emissions from an Optical Lens Manufacturer
(Standefer et al., 1999) 436
18.2.7 Advanced Biofilter for Controlling Styrene Emissions
(Punti, personal communication; Thissen, 1997) 437
References 438
19 Perspectives of Wastewater, Waste, Off-gas and Soil Treatment 439
Claudia Gallert and Josef Winter
19.1 Introduction 439
19.2 Wastewater Handling 439
19.2.1 Domestic Wastewater 440
19.2.2 Industrial Wastewater 442
19.2.3 Effluent Quality and Future Improvements 443
19.3 Solid Waste Handling 444
19.4 Off-gas Purification 446
19.5 Soil Remediation 446
19.6 Drinking Water Preparation 448
19.7 Future Strategies to Reduce Pollution and Conserve
a Natural, Healthy Environment 448
Subject Index 453 |
any_adam_object | 1 |
author_GND | (DE-588)112088260 |
building | Verbundindex |
bvnumber | BV019646027 |
classification_rvk | QR 525 WF 9700 WF 9795 |
classification_tum | UMW 470f CIT 980f UMW 535f |
ctrlnum | (OCoLC)634819767 (DE-599)BVBBV019646027 |
discipline | Biologie Chemie-Ingenieurwesen Biotechnologie Wirtschaftswissenschaften Umwelt |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV019646027</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060808</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">041229s2005 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N29,0751</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">971591881</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527305858</subfield><subfield code="c">Gb. : ca. EUR 109.00 (freier Pr.), ca. CHF 161.00 (freier Pr.)</subfield><subfield code="9">3-527-30585-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527305858</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1130585 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634819767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019646027</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-526</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QR 525</subfield><subfield code="0">(DE-625)142044:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9700</subfield><subfield code="0">(DE-625)148458:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9795</subfield><subfield code="0">(DE-625)148469:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 470f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 980f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 535f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Environmental biotechnology</subfield><subfield code="c">ed. by Hans-Joachim Jördening ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 463 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umwelttechnik</subfield><subfield code="0">(DE-588)4061650-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Umwelttechnik</subfield><subfield code="0">(DE-588)4061650-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jördening, Hans-Joachim</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)112088260</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">KOBV Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012974804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012974804</subfield></datafield></record></collection> |
id | DE-604.BV019646027 |
illustrated | Illustrated |
indexdate | 2024-10-14T14:08:11Z |
institution | BVB |
isbn | 3527305858 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012974804 |
oclc_num | 634819767 |
open_access_boolean | |
owner | DE-M49 DE-BY-TUM DE-1102 DE-1046 DE-20 DE-634 DE-83 DE-526 |
owner_facet | DE-M49 DE-BY-TUM DE-1102 DE-1046 DE-20 DE-634 DE-83 DE-526 |
physical | XXIII, 463 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Environmental biotechnology ed. by Hans-Joachim Jördening ... Weinheim WILEY-VCH 2005 XXIII, 463 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Biotechnologie (DE-588)4069491-4 gnd rswk-swf Umwelttechnik (DE-588)4061650-2 gnd rswk-swf Biotechnologie (DE-588)4069491-4 s Umwelttechnik (DE-588)4061650-2 s DE-604 Jördening, Hans-Joachim Sonstige (DE-588)112088260 oth KOBV Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012974804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Environmental biotechnology Biotechnologie (DE-588)4069491-4 gnd Umwelttechnik (DE-588)4061650-2 gnd |
subject_GND | (DE-588)4069491-4 (DE-588)4061650-2 |
title | Environmental biotechnology |
title_auth | Environmental biotechnology |
title_exact_search | Environmental biotechnology |
title_full | Environmental biotechnology ed. by Hans-Joachim Jördening ... |
title_fullStr | Environmental biotechnology ed. by Hans-Joachim Jördening ... |
title_full_unstemmed | Environmental biotechnology ed. by Hans-Joachim Jördening ... |
title_short | Environmental biotechnology |
title_sort | environmental biotechnology |
topic | Biotechnologie (DE-588)4069491-4 gnd Umwelttechnik (DE-588)4061650-2 gnd |
topic_facet | Biotechnologie Umwelttechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012974804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT jordeninghansjoachim environmentalbiotechnology |