Computational methods in commutative algebra and algebraic geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Ausgabe: | 3. print. |
Schriftenreihe: | Algorithms and computation in mathematics
2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 408 S. Ill., graph. Darst. |
ISBN: | 3540213112 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV019628744 | ||
003 | DE-604 | ||
005 | 19980421 | ||
007 | t | ||
008 | 041210s2004 gw ad|| |||| 00||| eng d | ||
020 | |a 3540213112 |9 3-540-21311-2 | ||
035 | |a (OCoLC)249883900 | ||
035 | |a (DE-599)BVBBV019628744 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-19 |a DE-91G |a DE-384 |a DE-11 |a DE-739 |a DE-188 | ||
050 | 0 | |a QA251.3 | |
082 | 0 | |a 512.44 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
084 | |a MAT 135f |2 stub | ||
084 | |a MAT 140f |2 stub | ||
084 | |a DAT 530f |2 stub | ||
100 | 1 | |a Vasconcelos, Wolmer V. |d 1937- |e Verfasser |0 (DE-588)115627421 |4 aut | |
245 | 1 | 0 | |a Computational methods in commutative algebra and algebraic geometry |c Wolmer V. Vasconcelos ; with chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman |
250 | |a 3. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a XIII, 408 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Algorithms and computation in mathematics |v 2 | |
650 | 4 | |a Algebraische Geometrie - Computeralgebra | |
650 | 4 | |a Kommutative Algebra - Computeralgebra | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Commutative algebra |x Data processing | |
650 | 4 | |a Geometry, Algebraic |x Data processing | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Algorithms and computation in mathematics |v 2 |w (DE-604)BV011131286 |9 2 | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012957928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012957928 |
Datensatz im Suchindex
_version_ | 1804132996151771136 |
---|---|
adam_text | Contents
Introduction
..................................................... 1
1 Fundamental
Algorithms
...................................... 7
1.1 Gröbner Basics ............................................ 8
1.2 Division
Algorithms
........................................ 12
1.3
Computation of Syzygies
.................................... 18
1.4
Hubert Functions
........................................... 21
1.5
Computer Algebra Systems
.................................. 26
2
Toolkit
..................................................... 29
2.1
Elimination Techniques
..................................... 30
2.2
Rings of Endomorphisms
.................................... 35
2.3
Noether Normalization
...................................... 37
2.4
Fitting Ideals
.............................................. 41
2.5
Finite and Quasi-Finite Morphisms
........................... 46
2.6
Flat Morphisms
............................................ 49
2.7
Cohen—Macaulay Algebras
.................................. 58
3
Principles of Primary Decomposition
............................ 65
3.1
Associated Primes and Irreducible Decomposition
............... 67
3.2
Equidimensional Decomposition of an Ideal
.................... 77
3.3
Equidimensional Decomposition Without Exts
.................. 83
3.4
Mixed Primary Decomposition
............................... 85
3.5
Elements of Factorizers
..................................... 90
4
Computing in
Artin
Algebras
..................................103
4.1
Structure of
Artin
Algebras
.................................. 104
4.2
Zero-Dimensional Ideals
.................................... 109
4.3
Idempotents versus Primary Decomposition
.................... 113
4.4
Decomposition via Sampling
................................. 115
4.5
Root Finders
.............................................. 120
XII Contents
5 Nullstellensätze..............................................127
5.1
Radicals via Elimination
..................................... 128
5.2
Modules of Differentials and Jacobian Ideals
.................... 130
5.3
Generic Socles
............................................. 134
5.4
Explicit
Nullstellensätze..................................... 136
5.5
Finding Regular Sequences
.................................. 141
5.6
Top Radical and Upper Jacobians
............................. 146
6
Integral Closure
.............................................149
6.1
Integrally Closed Rings
..................................... 151
6.2
Multiplication Rings
........................................ 154
6.3
S^-ification of an
Affine
Ring
................................ 159
6.4
Desingularization in Codimension One
........................ 167
6.5
Discriminants and Multipliers
................................ 173
6.6
Integral Closure of an Ideal
.................................. 176
6.7
Integral Closure of a Morphism
............................... 184
7
Ideal Transforms and Rings of Invariants
........................189
7.1
Divisorial Properties of Ideal Transforms
....................... 190
7.2
Equations of Blowup Algebras
............................... 193
7.3
Subrings
.................................................. 202
7.4
Rings
ofinvariants
......................................... 209
8
Computation of Cohomology
...................................219
8.1
Eyeballing
................................................ 220
8.2
Local Duality
.............................................. 222
8.3
Approximation
............................................. 224
9
Degrees of Complexity of a Graded Module
......................227
9.1
Degrees of Modules
........................................ 230
9.2
Index of Nilpotency
......................................... 244
9.3
Qualitative Aspects of Noether Normalization
................... 249
9.4
Homological Degrees of a Module
............................ 263
9.5
Complexity Bounds in Local Rings
............................ 273
A A Primer on Commutative Algebra
.............................281
A.I NoetherianRings
........................................... 281
A.2 Krull Dimension
........................................... 288
A.3 Graded Algebras
........................................... 295
A.4 Integral Extensions
......................................... 298
A.5 Finitely Generated Algebras over Fields
........................ 305
A.6 The Method of Syzygies
..................................... 309
A.7 Cohen-Macaulay Rings and Modules
.......................... 321
A.8 Local Cohomology
......................................... 329
A.9 Linkage Theory
............................................ 338
Contents XIII
В
Hubert
Functions
............................................343
B.I G-Graded Rings and G-Filtrations
............................. 343
B.2 The Study of
R mgrF(R)
................................... 347
B.3 The Hilbert-Samuel Function
................................ 352
B.4 Hubert Functions, Resolutions and Local Cohomology
........... 356
B.5 Lexsegment Ideals and Macaulay Theorem
..................... 359
B.6 The Theorems of Green and Gotzmann
........................ 362
С
Using Macaulay
2.............................................367
C.I Elementary Uses of Macaulay
2.............................. 368
C.2 Local Cohomology of Graded Modules
........................ 382
C.3 Cohomology of a Coherent Sheaf
............................. 387
References
......................................................393
Index
...........................................................405
|
any_adam_object | 1 |
author | Vasconcelos, Wolmer V. 1937- |
author_GND | (DE-588)115627421 |
author_facet | Vasconcelos, Wolmer V. 1937- |
author_role | aut |
author_sort | Vasconcelos, Wolmer V. 1937- |
author_variant | w v v wv wvv |
building | Verbundindex |
bvnumber | BV019628744 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 |
callnumber-search | QA251.3 |
callnumber-sort | QA 3251.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 SK 240 ST 600 |
classification_tum | MAT 135f MAT 140f DAT 530f |
ctrlnum | (OCoLC)249883900 (DE-599)BVBBV019628744 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
edition | 3. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02369nam a2200577 cb4500</leader><controlfield tag="001">BV019628744</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980421 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">041210s2004 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540213112</subfield><subfield code="9">3-540-21311-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249883900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019628744</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 135f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vasconcelos, Wolmer V.</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115627421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods in commutative algebra and algebraic geometry</subfield><subfield code="c">Wolmer V. Vasconcelos ; with chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 408 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algorithms and computation in mathematics</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraische Geometrie - Computeralgebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kommutative Algebra - Computeralgebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algorithms and computation in mathematics</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV011131286</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012957928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012957928</subfield></datafield></record></collection> |
id | DE-604.BV019628744 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:01:41Z |
institution | BVB |
isbn | 3540213112 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012957928 |
oclc_num | 249883900 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-384 DE-11 DE-739 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-384 DE-11 DE-739 DE-188 |
physical | XIII, 408 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Algorithms and computation in mathematics |
series2 | Algorithms and computation in mathematics |
spelling | Vasconcelos, Wolmer V. 1937- Verfasser (DE-588)115627421 aut Computational methods in commutative algebra and algebraic geometry Wolmer V. Vasconcelos ; with chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman 3. print. Berlin [u.a.] Springer 2004 XIII, 408 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Algorithms and computation in mathematics 2 Algebraische Geometrie - Computeralgebra Kommutative Algebra - Computeralgebra Datenverarbeitung Commutative algebra Data processing Geometry, Algebraic Data processing Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 s Computeralgebra (DE-588)4010449-7 s DE-604 Algebraische Geometrie (DE-588)4001161-6 s Algorithms and computation in mathematics 2 (DE-604)BV011131286 2 Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012957928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Vasconcelos, Wolmer V. 1937- Computational methods in commutative algebra and algebraic geometry Algorithms and computation in mathematics Algebraische Geometrie - Computeralgebra Kommutative Algebra - Computeralgebra Datenverarbeitung Commutative algebra Data processing Geometry, Algebraic Data processing Algebraische Geometrie (DE-588)4001161-6 gnd Computeralgebra (DE-588)4010449-7 gnd Kommutative Algebra (DE-588)4164821-3 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4010449-7 (DE-588)4164821-3 |
title | Computational methods in commutative algebra and algebraic geometry |
title_auth | Computational methods in commutative algebra and algebraic geometry |
title_exact_search | Computational methods in commutative algebra and algebraic geometry |
title_full | Computational methods in commutative algebra and algebraic geometry Wolmer V. Vasconcelos ; with chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman |
title_fullStr | Computational methods in commutative algebra and algebraic geometry Wolmer V. Vasconcelos ; with chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman |
title_full_unstemmed | Computational methods in commutative algebra and algebraic geometry Wolmer V. Vasconcelos ; with chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman |
title_short | Computational methods in commutative algebra and algebraic geometry |
title_sort | computational methods in commutative algebra and algebraic geometry |
topic | Algebraische Geometrie - Computeralgebra Kommutative Algebra - Computeralgebra Datenverarbeitung Commutative algebra Data processing Geometry, Algebraic Data processing Algebraische Geometrie (DE-588)4001161-6 gnd Computeralgebra (DE-588)4010449-7 gnd Kommutative Algebra (DE-588)4164821-3 gnd |
topic_facet | Algebraische Geometrie - Computeralgebra Kommutative Algebra - Computeralgebra Datenverarbeitung Commutative algebra Data processing Geometry, Algebraic Data processing Algebraische Geometrie Computeralgebra Kommutative Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012957928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011131286 |
work_keys_str_mv | AT vasconceloswolmerv computationalmethodsincommutativealgebraandalgebraicgeometry |