Clustering by using a simplex structure:

Abstract: "In this paper we interpret clustering as a mapping of data into a simplex. If the data itself has simplex structure this mapping becomes linear. Spectral analysis is an often used tool for clustering data. We will show that corresponding singular vectors or eigenvectors comprise simp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Weber, Marcus 1972- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationszentrum 2004
Schriftenreihe:ZIB-Report 2004,03
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Zusammenfassung:Abstract: "In this paper we interpret clustering as a mapping of data into a simplex. If the data itself has simplex structure this mapping becomes linear. Spectral analysis is an often used tool for clustering data. We will show that corresponding singular vectors or eigenvectors comprise simplex structure. Therefore they lead to a cluster algorithm, which consists of a simple linear mapping. An example for this kind of algorithms is the Perron cluster analysis (PCCA). We have applied it in practice to identify metastable sets of molecular dynamical systems. In contrast to other algorithms, this approach provides an a priori criterion to determine the number of clusters. In this paper we extend the ideas to more general problems like clustering of bipartite graphs."
Beschreibung:22 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Inhaltsverzeichnis