Data mining techniques: for marketing, sales, and customer relationship management
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Indianapolis, Ind.
Wiley
2004
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Wiley technology publication
|
Schlagworte: | |
Online-Zugang: | Table of contents Publisher description Klappentext |
Beschreibung: | Includes index |
Beschreibung: | XXV, 643 S. graph. Darst. |
ISBN: | 0471470643 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV019396445 | ||
003 | DE-604 | ||
005 | 20050830 | ||
007 | t | ||
008 | 040917s2004 xxud||| |||| 00||| eng d | ||
010 | |a 2003026693 | ||
020 | |a 0471470643 |c paper/website |9 0-471-47064-3 | ||
035 | |a (OCoLC)265463169 | ||
035 | |a (DE-599)BVBBV019396445 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-739 |a DE-1047 |a DE-Aug4 |a DE-945 |a DE-473 |a DE-355 |a DE-522 |a DE-634 | ||
050 | 0 | |a HF5415.125 | |
082 | 0 | |a 658.8/02 |2 22 | |
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a QP 650 |0 (DE-625)141922: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Berry, Michael J. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Data mining techniques |b for marketing, sales, and customer relationship management |c Michael J.A. Berry, Gordon S. Linoff |
250 | |a 2. ed. | ||
264 | 1 | |a Indianapolis, Ind. |b Wiley |c 2004 | |
300 | |a XXV, 643 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley technology publication | |
500 | |a Includes index | ||
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Gestion - Informatique | |
650 | 4 | |a Marketing - Informatique | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Wirtschaft | |
650 | 4 | |a Business |x Data processing | |
650 | 4 | |a Data mining | |
650 | 4 | |a Marketing |x Data processing | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kundenmanagement |0 (DE-588)4236865-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Marketing |0 (DE-588)4037589-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data-Warehouse-Konzept |0 (DE-588)4406462-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Data-Warehouse-Konzept |0 (DE-588)4406462-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Marketing |0 (DE-588)4037589-4 |D s |
689 | 1 | 1 | |a Kundenmanagement |0 (DE-588)4236865-0 |D s |
689 | 1 | 2 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Linoff, Gordon |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip0412/2003026693.html |3 Table of contents | |
856 | 4 | |u http://www.loc.gov/catdir/description/wiley041/2003026693.html |3 Publisher description | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012858946&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-012858946 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804132848337158144 |
---|---|
adam_text | Contents
Acknowledgments
XIX
About the Authors
xxi
Introduction
xxiii
Chapter
1
Why and What Is Data Mining?
1
Analytic Customer Relationship Management
2
The Role of Transaction Processing Systems
3
The Role of Data Warehousing
4
The Role of Data Mining
5
The Role of the Customer Relationship Management Strategy
6
What Is Data Mining?
7
What Tasks Can Be Performed with Data Mining?
8
Classification
8
Estimation
9
Prediction
10
Affinity Grouping or Association Rules
11
Clustering
11
Profiling
12
Why Now?
12
Data Is Being Produced
12
Data Is Being Warehoused
13
Computing Power Is Affordable
13
Interest in Customer Relationship Management Is Strong
13
Every Business Is a Service Business
14
Information Is a Product
14
Commercial Data Mining Software Products
Have Become Available
15
vi
Contents
How Data Mining Is Being Used Today
15
A Supermarket Becomes an Information Broker
15
A Recommendation-Based Business
16
Cross-Selling
17
Holding on to Good Customers
17
Weeding out Bad Customers
18
Revolutionizing an Industry
18
And Just about Anything Else
19
Lessons Learned
19
Chapter
2
The Virtuous Cycle of Data Mining
21
A Case Study in Business Data Mining
22
Identifying the Business Challenge
23
Applying Data Mining
24
Acting on the Results
25
Measuring the Effects
25
What Is the Virtuous Cycle?
26
Identify the Business Opportunity
27
Mining Data
28
Take Action
30
Measuring Results
30
Data Mining in the Context of the Virtuous Cycle
32
A Wireless Communications Company Makes
the Right Connections
34
The Opportunity
34
How Data Mining Was Applied
35
Defining the Inputs
37
Derived Inputs
37
The Actions
38
Completing the Cycle
39
Neural Networks and Decision Trees Drive SUV Sales
39
The Initial Challenge
39
How Data Mining Was Applied
40
The Data
40
Down the Mine Shaft
40
The Resulting Actions
41
Completing the Cycle
42
Lessons Learned
42
Chapter
3
Data Mining Methodology and Best Practices
43
Why Have a Methodology?
44
Learning Things That Aren t True
44
Patterns May Not Represent Any Underlying Rule
45
The Model Set May Not Reflect the Relevant Population
46
Data May Be at the Wrong Level of Detail
47
Contents
vii
Learning Things That Are True, but Not Useful
48
Learning Things That Are Already Known
49
Learning Things That Can t Be Used
49
Hypothesis Testing
50
Generating Hypotheses
51
Testing Hypotheses
51
Models, Profiling, and Prediction
51
Profiling
53
Prediction
54
The Methodology
54
Step One: Translate the Business Problem
into a Data Mining Problem
56
What Does a Data Mining Problem Look Like?
56
How Will the Results Be Used?
57
How Will the Results Be Delivered?
58
The Role of Business Users and Information Technology
58
Step Two: Select Appropriate Data
60
What Is Available?
61
How Much Data Is Enough?
62
How Much History Is Required?
63
How Many Variables?
63
What Must the Data Contain?
64
Step Three: Get to Know the Data
64
Examine Distributions
65
Compare Values with Descriptions
66
Validate Assumptions
67
Ask Lots of Questions
67
Step Four: Create a Model Set
68
Assembling Customer Signatures
68
Creating a Balanced Sample
68
Including Multiple
Timeframes
70
Creating a Model Set for Prediction
70
Partitioning the Model Set
71
Step Five: Fix Problems with the Data
72
Categorical Variables with Too Many Values
73
Numeric Variables with Skewed Distributions and Outliers
73
Missing Values
73
Values with Meanings That Change over Time
74
Inconsistent Data Encoding
74
Step Six: Transform Data to Bring Information to the Surface
74
Capture Trends
75
Create Ratios and Other Combinations of Variables
75
Convert Counts to Proportions
75
Step Seven: Build Models
77
viii Contents
Step Eight: Assess Models
78
Assessing Descriptive Models
78
Assessing Directed Models
78
Assessing Classifiers and Predictors
79
Assessing Estimators
79
Comparing Models Using Lift
81
Problems with Lift
83
Step Nine: Deploy Models
84
Step Ten: Assess Results
85
Step Eleven: Begin Again
85
Lessons Learned
86
Chapter
4
Data Mining Applications in Marketing and
Customer Relationship Management
87
Prospecting
87
Identifying Good Prospects
88
Choosing a Communication Channel
89
Picking Appropriate Messages
89
Data Mining to Choose the Right Place to Advertise
90
Who Fits the Profile?
90
Measuring Fitness for Groups of Readers
93
Data Mining to Improve Direct Marketing Campaigns
95
Response Modeling
96
Optimizing Response for a Fixed Budget
97
Optimizing Campaign Profitability
100
How the Model Affects Profitability
103
Reaching the People Most Influenced by the Message
106
Differential Response Analysis
107
Using Current Customers to Learn About Prospects
108
Start Tracking Customers before They Become Customers
109
Gather Information from New Customers
109
Acquisition-Time Variables Can Predict Future Outcomes
110
Data Mining for Customer Relationship Management
110
Matching Campaigns to Customers
no
Segmenting the Customer Base
111
Finding Behavioral Segments
111
Tying Market Research Segments to Behavioral Data
113
Reducing Exposure to Credit Risk
113
Predicting Who Will Default
113
Improving Collections
114
Determining Customer Value
114
Cross-selling, Up-selling, and Making Recommendations
115
Finding the Right Time for an Offer
115
Making Recommendations
116
Retention and Churn
116
Recognizing Churn
116
Why Chum Matters
117
Different Kinds of Churn
118
Contents
ix
Different Kinds of Churn Model
119
Predicting Who Will Leave
119
Predicting How Long Customers Will Stay
119
Lessons Learned
120
Chapter
5
The Lure of Statistics: Data Mining Using Familiar Tools
123
Occam s Razor
124
The Null Hypothesis
125
P-Values
126
A Look at Data
126
Looking at Discrete Values
127
Histograms
127
Time Series
128
Standardized Values
129
From Standardized Values to Probabilities
133
Cross-Tabulations
136
Looking at Continuous Variables
136
Statistical Measures for Continuous Variables
137
Variance and Standard Deviation
138
A Couple More Statistical Ideas
139
Measuring Response
139
Standard Error of a Proportion
139
Comparing Results Using Confidence Bounds
141
Comparing Results Using Difference of Proportions
143
Size of Sample
145
What the Confidence Interval Really Means
146
Size of Test and Control for an Experiment
147
Multiple Comparisons
148
The Confidence Level with Multiple Comparisons
148
Bonferroni s Correction
149
Chi-Square Test
149
Expected Values
150
Chi-Square Value
151
Comparison of Chi-Square to Difference of Proportions
; 153
An Example: Chi-Square for Regions and Starts
155
Data Mining and Statistics
158
No Measurement Error in Basic Data
159
There Is a Lot of Data
160
Time Dependency Pops Up Everywhere
160
Experimentation is Hard
160
Data Is Censored and Truncated
161
Lessons Learned
162
Chapter
6
Decision Trees
165
What Is a Decision Tree?
166
Classification
166
Scoring
169
Estimation
170
Trees Grow in Many Forms
170
Contents
Chapter
7
How a Decision Tree Is Grown
171
Finding the Splits
172
Splitting on a Numeric Input Variable
173
Splitting on a Categorical Input Variable
174
Splitting in the Presence of Missing Values
174
Growing the Full Tree
175
Measuring the Effectiveness Decision Tree
176
Tests for Choosing the Best Split
176
Purity and Diversity
177
Gini
or Population Diversity
178
Entropy Reduction or Information Gain
179
Information Gain Ratio
180
Chi-Square Test
180
Reduction in Variance
183
F
Test
183
Pruning
184
The CART Pruning Algorithm
185
Creating the Candidate Subtrees
185
Picking the Best Subtree
189
Using the Test Set to Evaluate the Final Tree
189
The C5 Pruning Algorithm
190
Pessimistic Pruning
191
Stability-Based Pruning
191
Extracting Rules from Trees
193
Taking Cost into Account
195
Further Refinements to the Decision Tree Method
195
Using More Than One Field at a Time
195
Tilting the
Hyperplane
197
Neural Trees
199
Piecewise Regression Using Trees
199
Alternate Representations for Decision Trees
199
Box Diagrams
199
Tree Ring Diagrams
201
Decision Trees in Practice
203
Decision Trees as a Data Exploration Tool
203
Applying Decision-Tree Methods to Sequential Events
205
Simulating the Future
206
Case Study: Process Control in a Coffee-Roasting Plant
206
Lessons Learned
209
Artificial Neural Networks
21!
A Bit of History
212
Real Estate Appraisal
213
Neural Networks for Directed Data Mining
219
What Is a Neural Net?
220
What Is the Unit of a Neural Network?
222
Feed-Forward Neural Networks
226
Contents xi
How Does a Neural Network Learn Using
Back Propagation?
228
Heuristics for Using Feed-Forward,
Back Propagation Networks
231
Choosing the Training Set
232
Coverage of Values for All Features
232
Number of Features
233
Size of Training Set
234
Number of Outputs
234
Preparing the Data
235
Features with Continuous Values
235
Features with Ordered, Discrete (Integer) Values
238
Features with Categorical Values
239
Other Types of Features
241
Interpreting the Results
241
Neural Networks for Time Series
244
How to Know What Is Going on Inside a Neural Network
247
Self-Organizing Maps
249
What Is a Self-Organizing Map?
249
Example: Finding Clusters
252
Lessons Learned
254
Chapter
8
Nearest Neighbor Approaches: Memory-Based
Reasoning and Collaborative Filtering
257
Memory Based Reasoning
258
Example: Using MBR to Estimate Rents in Tuxedo, New York
259
Challenges of MBR
262
Choosing a Balanced Set of Historical Records
262
Representing the Training Data
263
Determining the Distance Function, Combination
Function, and Number of Neighbors
265
Case Study: Classifying News Stories
265
What Are the Codes?
266
Applying MBR
267
Choosing the Training Set
267
Choosing the Distance Function
267
Choosing the Combination Function
267
Choosing the Number of Neighbors
270
The Results
270
Measuring Distance
271
What Is a Distance Function?
271
Building a Distance Function One Field at a Time
274
Distance Functions for Other Data Types
277
When a Distance Metric Already Exists
278
The Combination Function: Asking the Neighbors
for the Answer
279
The Basic Approach: Democracy
279
Weighted Voting
281
xii Contents
Collaborative
Filtering: A Nearest Neighbor Approach to
Making Recommendations
282
Building Profiles
283
Comparing Profiles
284
Making Predictions
284
Lessons Learned
285
Chapter
9
Market Basket Analysis and Association Rules
287
Defining Market Basket Analysis
289
Three Levels of Market Basket Data
289
Order Characteristics
292
Item Popularity
293
Tracking Marketing Interventions
293
Clustering Products by Usage
294
Association Rules
296
Actionable Rules
296
Trivial Rules
297
Inexplicable Rules
297
How Good Is an Association Rule?
299
Building Association Rules
302
Choosing the Right Set of Items
303
Product Hierarchies Help to Generalize Items
305
Virtual
Items Go beyond the Product Hierarchy
307
Data Quality
308
Anonymous versus Identified
308
Generating Rules from All This Data
308
Calculating Confidence
309
Calculating Lift
310
The Negative Rule
311
Overcoming Practical Limits
311
The Problem of Big Data
313
Extending the Ideas
315
Using Association Rules to Compare Stores
315
Dissociation Rules
317
Sequential Analysis Using Association Rules
318
Lessons Learned
319
Chapter
10
Link Analysis
321
Basic Graph Theory
322
Seven Bridges of
Königsberg
325
Traveling Salesman Problem
327
Directed Graphs
330
Detecting Cycles in a Graph
330
A Familiar Application of Link Analysis
331
The
Kleinberg
Algorithm
332
The Details: Finding Hubs and Authorities
333
Creating the Root Set
333
Identifying the Candidates
334
Ranking Hubs and Authorities
334
Hubs and Authorities in Practice
336
Contents
xiii
Case Study: Who Is Using Fax Machines from Home?
336
Why Finding Fax Machines Is Useful
336
The Data as a Graph
337
The Approach
338
Some Results
340
Case Study: Segmenting Cellular Telephone Customers
343
The Data
343
Analyses without Graph Theory
343
A Comparison of Two Customers
344
The Power of Link Analysis
345
Lessons Learned
346
Chapter
11
Automatic Cluster Detection
349
Searching for Islands of Simplicity
350
Star Light, Star Bright
351
Fitting the Troops
352
K-Means Clustering
354
Three Steps of the K-Means Algorithm
354
What
К
Means
356
Similarity and Distance
358
Similarity Measures and Variable Type
359
Formal Measures of Similarity
360
Geometric Distance between Two Points
360
Angle between Two Vectors
361
Manhattan Distance
363
Number of Features in Common
363
Data Preparation for Clustering
363
Scaling for Consistency
363
Use Weights to Encode Outside Information
365
Other Approaches to Cluster Detection
365
Gaussian Mixture Models
365
Agglomerative Clustering
368
An Agglomerative Clustering Algorithm
368
Distance between Clusters
368
Clusters and Trees
370
Clustering People by Age: An Example of
Agglomerative Clustering
370
Divisive Clustering
371
Self-Organizing Maps
372
Evaluating Clusters
372
Inside the Cluster
373
Outside the Cluster
373
Case Study: Clustering Towns
374
Creating Town Signatures
374
The Data
375
Creating Clusters
377
Determining the Right Number of Clusters
377
Using Thematic Clusters to Adjust Zone Boundaries
380
Lessons Learned
381
xiv Contents
Chapter
12
Knowing When to Worry: Hazard Functions and
Survival Analysis in Marketing
383
Customer Retention
385
Calculating Retention
385
What a Retention Curve Reveals
386
Finding the Average Tenure from a Retention Curve
387
Looking at Retention as Decay
389
Hazards
394
The Basic Idea
394
Examples of Hazard Functions
397
Constant Hazard
397
Bathtub Hazard
397
A Real-World Example
398
Censoring
399
Other Types of Censoring
402
From Hazards to Survival
404
Retention
404
Survival
405
Proportional Hazards
408
Examples of Proportional Hazards
409
Stratification; Measuring Initial Effects on Survival
410
Cox Proportional Hazards
410
Limitations of Proportional Hazards
411
Survival Analysis in Practice
412
Handling Different Types of Attrition
412
When Will a Customer Come Back?
413
Forecasting
415
Hazards Changing over Time
416
Lessons Learned
418
Chapter
13
Genetic Algorithms
421
How They Work
423
Genetics on Computers
424
Selection
429
Crossover
430
Mutation
431
Representing Data
432
Case Study: Using Genetic Algorithms for
Resource Optimization
433
Schemata: Why Genetic Algorithms Work
435
More Applications of Genetic Algorithms
438
Application to Neural Networks
439
Case Study: Evolving a Solution for Response Modeling
440
Business Context
440
Data
441
The Data Mining Task: Evolving a Solution
442
Beyond the Simple Algorithm
444
Lessons Learned
446
Contents
xv
Chapter
14
Data Mining throughout the Customer Life Cycle
447
Levels of the Customer Relationship
448
Deep Intimacy
449
Mass Intimacy
451
In-between Relationships
453
Indirect Relationships
453
Customer Life Cycle
454
The Customer s Life Cycle: Life Stages
455
Customer Life Cycle
456
Subscription Relationships versus Event-Based Relationships
458
Event-Based Relationships
458
Subscription-Based Relationships
459
Business Processes Are Organized around
the Customer Life Cycle
461
Customer Acquisition
461
Who Are the Prospects?
462
When Is a Customer Acquired?
462
What Is the Role of Data Mining?
464
Customer Activation
464
Relationship Management
466
Retention
467
Winback
470
Lessons Learned
470
Chapter
15
Data Warehousing,
OLAP,
and Data Mining
473
The Architecture of Data
475
Transaction Data, the Base Level
476
Operational Summary Data
477
Decision-Support Summary Data
477
Database Schema
478
Metadata
483
Business Rules
484
A General Architecture for Data Warehousing
484
Source Systems
486
Extraction, Transformation, and Load
487
Central Repository
488
Metadata Repository
491
Data Marts
491
Operational Feedback
492
End Users and Desktop Tools
492
Analysts
492
Application Developers
493
Business Users
494
Where Does
OLAP Fit
In?
494
What s in a Cube?
497
Three Varieties of Cubes
498
Facts
501
Dimensions and Their Hierarchies
502
Conformed Dimensions
504
xvi Contents
Star Schema
505
OLAP and Data Mining
507
Where Data
Mining
Fits in with Data Warehousing
508
Lots of Data
509
Consistent, Clean Data
510
Hypothesis Testing and Measurement
510
Scalable Hardware and
RDBMS
Support
511
Lessons Learned
511
Chapter
16
Building the Data Mining Environment
513
A Customer-Centric Organization
514
An Ideal Data Mining Environment
515
The Power to Determine What Data Is Available
515
The Skills to Turn Data into Actionable Information
516
All the Necessary Tools
516
Back to Reality
516
Building a Customer-Centric Organization
516
Creating a Single Customer View
517
Defining Customer-Centric Metrics
519
Collecting the Right Data
520
From Customer Interactions to Learning Opportunities
520
Mining Customer Data
521
The Data Mining Group
521
Outsourcing Data Mining
522
Outsourcing Occasional Modeling
522
Outsourcing Ongoing Data Mining
523
bisourdng Data Mining
524
Building an Interdisciplinary Data Mining Group
524
Building a Data Mining Group in IT
524
•
Building a Data Mining Group in the Business Units
525
What to Look for in Data Mining Staff
525
Data Mining Infrastructure
526
The Mining Platform
527
The Scoring Platform
527
One Example of a Production Data Mining Architecture
528
Architectural Overview
528
Customer Interaction Module
529
Analysis Module
530
Data Mining Software
532
Range of Techniques
532
Scalability
533
Support for Scoring
534
Multiple Levels of User Interfaces
535
Comprehensible Output
536
Ability to Handle Diverse Data Types
536
Documentation and Ease of Use
536
Contents xvii
Availability of Training for Both Novice and
Advanced Users, Consulting, and Support
537
Vendor Credibility
537
Lessons Learned
537
Chapter
17
Preparing Data for Mining
539
What Data Should Look Like
540
The Customer Signature
540
The Columns
542
Columns with One Value
544
Columns with Almost Only One Value
544
Columns with Unique Values
546
Columns Correlated with Target
547
Model Roles in Modeling
547
Variable Measures
549
Numbers
550
Dates and Times
552
Fixed-Length Character Strings
552
IDs and Keys
554
Names
555
Addresses
555
Free Text
556
Binary Data (Audio, Image, Etc.)
557
Data for Data Mining
557
Constructing the Customer Signature
558
Cataloging the Data
559
Identifying the Customer
560
First Attempt
562
Identifying the Time Frames
562
Taking a Recent Snapshot
562
Pivoting Columns
563
Calculating the Target
563
Making Progress
564
Practical Issues
564
Exploring Variables
565
Distributions Are Histograms
565
Changes over Time
566
Crosstabulations
567
Deriving Variables
568
Extracting Features from a Single Value
569
Combining Values within a Record
569
Looking Up Auxiliary Information
569
Pivoting Regular Time Series
572
Summarizing Transactional Records
574
Summarizing Fields across the Model Set
574
xviii Contents
Examples of Behavior-Based Variables
575
Frequency of Purchase
575
Declining Usage
577
Revolvers, Transactors, and Convenience Users:
Defining Customer Behavior
580
Data
581
Segmenting by Estimating Revenue
581
Segmentation by Potential
583
Customer Behavior by Comparison to Ideals
585
The Ideal Convenience User
587
The Dark Side of Data
590
Missing Values
590
Dirty Data
592
Inconsistent Values
593
Computational Issues
594
Source Systems
594
Extraction Tools
595
Special-Purpose Code
595
Data Mining Tools
595
Lessons Learned
596
Chapter!
8
Putting Data Mining to Work
597
Getting Started
598
What to Expect from a Proof-of-Concept Project
599
Identifying a Proof-of-Concept Project
599
Implementing the Proof-of-Concept Project
601
Act on Your Findings
602
Measure the Results of the Actions
603
Choosing a Data Mining Technique
605
Formulate the Business Goal as a Data Mining Task
605
Determine the Relevant Characteristics of the Data
606
Data Type
606
Number of Input Fields
607
Free-Form Text
607
Consider Hybrid Approaches
608
How One Company Began Data Mining
608
A Controlled Experiment in Retention
609
The Data
611
The Findings
613
The Proof of the Pudding
614
Lessons Learned
614
Index
615
|
any_adam_object | 1 |
author | Berry, Michael J. A. |
author_facet | Berry, Michael J. A. |
author_role | aut |
author_sort | Berry, Michael J. A. |
author_variant | m j a b mja mjab |
building | Verbundindex |
bvnumber | BV019396445 |
callnumber-first | H - Social Science |
callnumber-label | HF5415 |
callnumber-raw | HF5415.125 |
callnumber-search | HF5415.125 |
callnumber-sort | HF 45415.125 |
callnumber-subject | HF - Commerce |
classification_rvk | QH 500 QP 650 ST 530 |
ctrlnum | (OCoLC)265463169 (DE-599)BVBBV019396445 |
dewey-full | 658.8/02 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.8/02 |
dewey-search | 658.8/02 |
dewey-sort | 3658.8 12 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Informatik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02654nam a2200661zc 4500</leader><controlfield tag="001">BV019396445</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050830 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040917s2004 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003026693</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471470643</subfield><subfield code="c">paper/website</subfield><subfield code="9">0-471-47064-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265463169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019396445</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HF5415.125</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.8/02</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 650</subfield><subfield code="0">(DE-625)141922:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berry, Michael J. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining techniques</subfield><subfield code="b">for marketing, sales, and customer relationship management</subfield><subfield code="c">Michael J.A. Berry, Gordon S. Linoff</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Indianapolis, Ind.</subfield><subfield code="b">Wiley</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 643 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley technology publication</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gestion - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kundenmanagement</subfield><subfield code="0">(DE-588)4236865-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Marketing</subfield><subfield code="0">(DE-588)4037589-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data-Warehouse-Konzept</subfield><subfield code="0">(DE-588)4406462-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data-Warehouse-Konzept</subfield><subfield code="0">(DE-588)4406462-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Marketing</subfield><subfield code="0">(DE-588)4037589-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kundenmanagement</subfield><subfield code="0">(DE-588)4236865-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linoff, Gordon</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip0412/2003026693.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/description/wiley041/2003026693.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012858946&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012858946</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV019396445 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:59:20Z |
institution | BVB |
isbn | 0471470643 |
language | English |
lccn | 2003026693 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012858946 |
oclc_num | 265463169 |
open_access_boolean | |
owner | DE-739 DE-1047 DE-Aug4 DE-945 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-522 DE-634 |
owner_facet | DE-739 DE-1047 DE-Aug4 DE-945 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-522 DE-634 |
physical | XXV, 643 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Wiley |
record_format | marc |
series2 | Wiley technology publication |
spelling | Berry, Michael J. A. Verfasser aut Data mining techniques for marketing, sales, and customer relationship management Michael J.A. Berry, Gordon S. Linoff 2. ed. Indianapolis, Ind. Wiley 2004 XXV, 643 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiley technology publication Includes index Exploration de données (Informatique) Gestion - Informatique Marketing - Informatique Datenverarbeitung Wirtschaft Business Data processing Data mining Marketing Data processing Data Mining (DE-588)4428654-5 gnd rswk-swf Kundenmanagement (DE-588)4236865-0 gnd rswk-swf Marketing (DE-588)4037589-4 gnd rswk-swf Data-Warehouse-Konzept (DE-588)4406462-7 gnd rswk-swf Data Mining (DE-588)4428654-5 s Data-Warehouse-Konzept (DE-588)4406462-7 s DE-604 Marketing (DE-588)4037589-4 s Kundenmanagement (DE-588)4236865-0 s 1\p DE-604 Linoff, Gordon Sonstige oth http://www.loc.gov/catdir/toc/ecip0412/2003026693.html Table of contents http://www.loc.gov/catdir/description/wiley041/2003026693.html Publisher description Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012858946&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Berry, Michael J. A. Data mining techniques for marketing, sales, and customer relationship management Exploration de données (Informatique) Gestion - Informatique Marketing - Informatique Datenverarbeitung Wirtschaft Business Data processing Data mining Marketing Data processing Data Mining (DE-588)4428654-5 gnd Kundenmanagement (DE-588)4236865-0 gnd Marketing (DE-588)4037589-4 gnd Data-Warehouse-Konzept (DE-588)4406462-7 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4236865-0 (DE-588)4037589-4 (DE-588)4406462-7 |
title | Data mining techniques for marketing, sales, and customer relationship management |
title_auth | Data mining techniques for marketing, sales, and customer relationship management |
title_exact_search | Data mining techniques for marketing, sales, and customer relationship management |
title_full | Data mining techniques for marketing, sales, and customer relationship management Michael J.A. Berry, Gordon S. Linoff |
title_fullStr | Data mining techniques for marketing, sales, and customer relationship management Michael J.A. Berry, Gordon S. Linoff |
title_full_unstemmed | Data mining techniques for marketing, sales, and customer relationship management Michael J.A. Berry, Gordon S. Linoff |
title_short | Data mining techniques |
title_sort | data mining techniques for marketing sales and customer relationship management |
title_sub | for marketing, sales, and customer relationship management |
topic | Exploration de données (Informatique) Gestion - Informatique Marketing - Informatique Datenverarbeitung Wirtschaft Business Data processing Data mining Marketing Data processing Data Mining (DE-588)4428654-5 gnd Kundenmanagement (DE-588)4236865-0 gnd Marketing (DE-588)4037589-4 gnd Data-Warehouse-Konzept (DE-588)4406462-7 gnd |
topic_facet | Exploration de données (Informatique) Gestion - Informatique Marketing - Informatique Datenverarbeitung Wirtschaft Business Data processing Data mining Marketing Data processing Data Mining Kundenmanagement Marketing Data-Warehouse-Konzept |
url | http://www.loc.gov/catdir/toc/ecip0412/2003026693.html http://www.loc.gov/catdir/description/wiley041/2003026693.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012858946&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT berrymichaelja dataminingtechniquesformarketingsalesandcustomerrelationshipmanagement AT linoffgordon dataminingtechniquesformarketingsalesandcustomerrelationshipmanagement |