Transduction channels in sensory cells:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim, Bergstr
WILEY-VCH
2004
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 304 S. Ill., graph. Darst. |
ISBN: | 3527308369 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019360465 | ||
003 | DE-604 | ||
005 | 20060808 | ||
007 | t | ||
008 | 040810s2004 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 970394004 |2 DE-101 | |
020 | |a 3527308369 |c Gb. : ca. EUR 139.00 (freier Pr.), ca. CHF 205.00 (freier Pr.) |9 3-527-30836-9 | ||
035 | |a (OCoLC)56515248 | ||
035 | |a (DE-599)BVBBV019360465 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-M49 |a DE-11 | ||
050 | 0 | |a QH601 | |
050 | 0 | |a QP455 | |
082 | 1 | |a 571.74 |2 22 | |
082 | 0 | |a 570 | |
084 | |a WE 5320 |0 (DE-625)148305: |2 rvk | ||
084 | |a BIO 770f |2 stub | ||
084 | |a BIO 750f |2 stub | ||
084 | |a 570 |2 sdnb | ||
084 | |a BIO 220f |2 stub | ||
084 | |a BIO 782f |2 stub | ||
084 | |a CHE 887f |2 stub | ||
245 | 1 | 0 | |a Transduction channels in sensory cells |c ed. by Stephan Frings and Jonathan Bradley |
264 | 1 | |a Weinheim, Bergstr |b WILEY-VCH |c 2004 | |
300 | |a XVII, 304 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Cellular signal transduction | |
650 | 4 | |a Models, Animal | |
650 | 4 | |a Molecular biology | |
650 | 4 | |a Sensation |x physiology | |
650 | 4 | |a Senses and sensation | |
650 | 4 | |a Sensory Receptor Cells |x physiology | |
650 | 4 | |a Signal Transduction |x physiology | |
650 | 0 | 7 | |a Sinneszelle |0 (DE-588)4181546-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transduktion |g Sinnesphysiologie |0 (DE-588)4575904-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sinneszelle |0 (DE-588)4181546-4 |D s |
689 | 0 | 1 | |a Transduktion |g Sinnesphysiologie |0 (DE-588)4575904-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Frings, Stephan |d 1956- |e Sonstige |0 (DE-588)129268216 |4 oth | |
700 | 1 | |a Bradley, Jonathan |e Sonstige |0 (DE-588)121381021 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012824210&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012824210 |
Datensatz im Suchindex
_version_ | 1804132794427768832 |
---|---|
adam_text | I V
Table of Contents
Preface XIII
List ofContributers XV
1 The Molecular Basis of Touch Sensation as Modeled in
Caenorhabditis elegans 1
Laura Bianchi and Monica Driscoll
Abstract 1
1.1 Introduction 2
1.2 Features of the C. elegans Model System 3
1.3 Mechanosensation Is a Major Mechanism by Which C. elegans Senses
Its Environment 4
1.4 Gentle Body Touch 5
1.4.1 The Touch Receptor Neurons 5
1.4.2 Ultrastructural Features of the Touch Receptor Neurons 5
1.4.2.1 Touch Cell specific Microtubules 5
1.4.2.2 The Extracellular Mantle 6
1.4.3 Genetic and Molecular Analysis of Body Touch 7
1.4.3.1 mec 4 and mec 10 Ion Channel Subunits Form Na+ Channels 7
1.4.3.2 MEC 4 at the Molecular Level 7
1.4.4 The Candidate Mechanotransducing Channel is a Heteromultimeric
Complex 9
1.4.4.1 MEC 4 and MEC 10 Form a Functional Ion Channel 10
1.4.4.2 MEC 2 Is a Stomatin like Protein That May Help Tether the MEC 4/
MEC 10 Channel to the Membrane Bilayer and/or the Cytoskeleton 10
1.4.4.3 MEC 6 Is a Transmembrane Paraoxonase like Protein That Controls
MEC Channel Activity 11
1.4.5 Intracellular Proteins Needed for Touch Transduction 13
1.4.6 Extracellular Proteins Needed for Touch Transduction 14
1.4.6.1 MEC 1 14
1.4.6.2 MEC 5 15
1.4.6.3 MEC 9 15
VII Table of Contents
1.4.7 The MEC Channel Functions Specifically in Neuronal Responses to
Gentle Touch 16
1.4.7.1 Test of a Key Hypothesis 16
1.4.7.2 Additional Insights Revealed by Imaging In Vivo Ca2+ Changes in
Responding Touch Neurons 18
1.4.8 Summary: A Molecular Model for Gentle touch Sensation 19
1.4.8.1 How Touch Is Sensed to Elicit a Specific Behavioral Response 19
1.4.8.2 Notes on the Working Model 19
1.5 The C. elegans Degenerin Family: A Global Role of Degenerin Channels
in Mechanotransduction? 20
1.5.1 unc 105 20
1.5.2 unc 8 and del 1 21
1.5.2.1 A Stomatin Partner for the UNC 8 Channel Suggests a Common
Composition of Degenerin Channels 21
1.5.2.2 Trp Channels May Also Contribute to Mechanosensory Functions in
C. elegans 23
1.5.2.3 Fly and Mouse Neuronal DEG/ENaCs Influence Mechanotransduction,
Supporting Conserved Roles for This Family of Proteins 24
1.6 Concluding Remarks 25
Acknowledgments 26
References 26
2 Transduction Channels in Hair Cells 31
Robert Fettiplace
2.1 Introduction 31
2.2 Gating Mechanism: Channel Kinetics 32
2.2.1 Tip Links and Gating Springs 34
2.2.2 Gating Compliance 36
2.2.3 Three state Channel Schemes 36
2.3 Ionic Selectivity 38
2.3.1 Blocking Compounds 40
2.4 MET Channel Adaptation 41
2.4.1 Ca2+Regulation of Adaptation 42
2.4.2 The Function of Adaptation 44
2.5 Single channel Conductance 45
2.5.1 Number of MET Channels Per Stereocilium 47
2.6 The MET Channel as a Member of the TRP Family 48
2.6.1 Properties of TRPV Channels 49
2.7 Conclusions 49
Acknowledgments 51
References 51
Table of Contents VII
3 Acid sensing Ion Channels 57
Kenneth A. Cushman and Edwin W. McQeskey
3.1 Introduction 57
3.2 ASICs and the DEG/ENaC Superfamily 58
3.3 Amino Acid Structure 61
3.4 Assembly Into Channels 61
3.5 Pharmacology 62
3.6 Gating 63
3.7 Proposed Sensory Functions 65
3.7.1 Pain/Nociception 65
3.7.2 Mechanosensation 66
3.7.3 Taste 67
3.8 CNS ASICs 67
3.9 Stroke 68
3.10 Other pH activated Channels 68
References 69
4 Chemosensory Transduction in Caenorhabditis elegans 73
Noelle LEtoile
4.1 Introduction 7i
4.1.1 The organism C. elegans 73
4.1.2 Introduction to the Channels 75
4.2 The Chemosensory Organs 75
4.2.1 The Amphid Organ 75
4.2.2 Phasmid Organ 78
4.2.3 Inner Labial 79
4.2.4 The Sensory Signaling Circuit 79
4.3 Behavioral Assays 79
4.3.1 Chemotaxis 80
4.3.2 Repulsion 81
4.3.3 Thermotaxis 82
4.3.4 Social Feeding or Bordering 82
4.4 How Is The Response to Each Stimulus Generated? 83
4.4.1 The Chemotaxis Olfactory Response 83
4.4.2 Chemotaxis to Water soluble Compounds 85
4.4.3 Repellents 85
4.4.3.1 The ASH Polymodal Sensory Neuron 85
4.4.4 Thermotaxis 86
4.4.5 Feeding Behavior 87
4.5 Structure of the TAX, Cyclic Nucleotide gated Channels of the Worm 88
4.6 Channel Regulation 93
References 94
VIII I Table of Contents
5 Vertebrate Olfactory Signal Transduction and the Interplay of Excitatory Anionic
and Cationic Currents 99
Johannes Reisert and Jonathan Bradley
Abstract 99
5.1 Introduction 99
5.1.1 Tissue 99
5.1.2 Olfactory Receptor Neurons 100
5.1.3 Sustentacular Cells 101
5.1.4 Basal Cells 102
5.2 Recording Odor induced Electrical Activity 102
5.2.1 The Electroolfactogram 102
5.3 Odorant Responses of Single Isolated Olfactory Receptor Neurons 103
5.4 Components of the Transduction Pathway 106
5.5 Cloning of G Proteins Expressed in the OE 108
5.5.1 Gaolf 108
5.5.2 Adenylyl Cyclase 108
5.6 Odorant Receptors 109
5.7 Cyclic Nucleotide gated Channel in OE 310
5.8 Cloning of a CNG Channel Expressed in the OE 114
5.9 Negative Feedback by Ca2+on the CNG Channel 115
5.10 The Olfactory Ca2+ activated Cl Channel 118
5.11 Activation of the Cl Conductance 119
5.12 Single Channel Properties and Channel Densities 121
5.13 Regulation of Cr Channel Activity 122
5.14 Amplification of the CNG Current and Generation of the Cl~ Current 123
5.15 Open Questions 126
References 127
6 Transduction Channels in the Vomeronasal Organ 135
Emily R. Liman and Frank Zufall
6.1 Introduction 135
6.2 Anatomy of the Vomeronasal System 136
6.3 Sensory Responses Involve Generation of Action Potentials and
Ca2+ Entry 137
6.4 Two Families of G protein coupled Receptors Mediate VNO
Transduction 139
6.5 Signaling Downstream of G Proteins May Involve a PLC 140
6.6 Second Messengers for VNO Transduction: Functional Studies 140
6.7 Identification of the TRPC2 Ion Channel as a Candidate Transduction
Channel for VNO Sensory Signaling 141
6.8 TRPC2 Is Essential for Pheromone Transduction 144
6.9 Mechanism of TRPC2 Activation 144
6.10 TRPC2 Knockout Mice: Behavioral Defects 146
6.11 Loss of VNO Signaling Components in Human Evolution 147
6.12 Summary: Is TRPC2 the VNO Transduction Channel? 149
Acknowledgements 150
I
Table of Contents I IX
7 Transduction Mechanisms in Taste Cells 153
Kathiyn Medler and Sue C. Kinnamon
7.1 Introduction 153
7.2 Ionic Stimuli 155
7.2.1 Salt 155
7.2.1.1 Epithelial Sodium Channel 155
7.2.1.2 Amiloride insensitive Pathway 158
7.2.2 Sour 159
7.2.2.1 Proton permeable Channels 161
7.2.2.2 Proton gated Channels 161
7.2.2.3 Proton blocked Channels 162
7.3 Complex Stimuli 163
7.3.1 GPCR Signaling in Taste Cells 163
7.3.2 Store operated Channels and TRPM5 164
7.3.3 Cyclic Nucleotide regulated Channels 169
7.3.4 Ligand gated Channels 171
7.3.5 Miscellaneous Channels 173
7.3.5.1 Fat modulated Channels 173
7.3.5.2 Water activated channels 173
7.4 Conclusions 174
8 Invertebrate Phototransduction: Multimolecular Signaling Complexes and
the Role of TRP and TRPL Channels 179
Armin Huber
Abstract 179
8.1 Introduction 180
8.2 Structure of the Drosophila Compound Eye and Its Visual Pigments 181
8.3 The Drosophila Phototransduction Cascade Is a Prototypical G protein
coupled Signaling Pathway 184
8.4 Essential Components of the Transduction Pathway Are Organized into
a Multimolecular Signaling Complex 186
8.5 TRP and TRPL, the Transduction Channels of Drosophila
Photoreceptors 189
8.5.1 Identification and Characterization of TRP and TRPL 189
8.5.2 Possible Gating Mechanism 191
8.5.3 Transduction Channels in the Visual Systems of Other Invertebrates 193
8.5.4 Drosophila TRP Is the Founding Member of the TRP Family of Ion
Channels 194
8.6 light dependent Relocation of TRPL Alters the Properties of the
Photoreceptive Membrane 196
8.7 Concluding Remarks and Outlook 198
Acknowledgments 199
xl Table of Contents
9 The Transduction Channels of Rod and Cone Photoreceptors 207
U.S. Kaupp and D. Trankner
9.1 Introduction 207
9.2 Brief Overview 207
9.2.1 Ligand Sensitivity 207
9.2.2 Ion selectivity 208
9.2.3 Modulation 208
9.3 Function of CNG Channels in Phototransduction and Adaptation 209
9.3.1 Rod and Cone Photoreceptors 209
9.3.2 CNG Channels in Pinealocyte Photoreceptors 212
9.3.3 CNG Channels in Parietal Eye Photoreceptors 213
9.3.4 CNG Channels in Hyperpolarizing Photoreceptors of Invertebrates 224
9.4 Structure of Subunits 215
9.5 Transmembrane Topology and Subunit Stoichiometry 215
9.6 Interaction of CNG Channels With Other Proteins 219
9.6.1 The Glutamic Acid rich Part (GARP) of Bl 219
9.6.2 Interaction with the Na+/Ca2+ K+ Exchanger 220
9.7 Modulation 221
9.7.1 Modulation by Ca2+ 221
9.8 Phosphorylation 223
9.8.1 Retinal 223
9.9 Visual Dysfunction Caused by Mutant CNG Channel Genes 224
9.9.1 Mutations Associated with Retinitis Pigmentosa 225
9.9.2 Mutations Associated with Achromatopsia or Cone Dystrophy 227
Appendix 229
10 Ion Channels and Thermotransduction 235
Michael J. Caterina
10.1 Introduction 235
10.2 Physiological Studies Provide Evidence for the Existence of Thermally
Gated Ion Channels 236
10.3 Molecular Characterization of a Heat gated Ion Channel, TRPV1 239
10.4 TRPV2 Is an Ion Channel Activated by Extremely Hot Temperatures 241
10.5 TRPV3 and TRPV4 Are Warmth activated Channels 242
10.6 TRPM8 and ANKTM1 Are Activated by Cool and Cold Temperatures,
Respectively 242
10.7 Non TRP Channels Implicated in Mammalian Temperature
Sensation 243
10.8 Temperature sensing Proteins in Non mammalian Species 244
10.9 Mechanisms of Temperature Transduction 245
10.10 Conclusions 246
Table of Contents I XI
11 Pain Transduction: Gating and Modulation of Ion Channels 251
Peter A. McNaughton
11.1 Introduction 252
11.2 Ion Channels Gated by Noxious Stimuli 253
11.2.1 Ion Channels Gated by Noxious Heat 253
11.2.2 Ion Channels Gated by Noxious Cold 254
11.2.3 Ion Channels Gated by Acid 254
11.2.4 ATP gated Ion Channels 255
11.2.5 Ion Channels Gated by Mechanical Stimuli 256
11.2.6 Initiation of Action Potentials by Noxious Stimuli 256
11.2.7 Summary Diagram of a Nociceptive Terminal 257
11.3 Sensitization by Inflammatory Mediators 257
11.3.1 Short term Sensitization: Mediators and Pathways 258
11.3.1.1 Bradykinin and the PKC Pathway 258
11.3.1.2 Prostaglandins and the PKA Pathway 260
11.3.2 Nerve Growth Factor 262
11.3.3 Direct Modulation of TRPV1 by Protons 263
11.3.4 Other Modulators of Nociceptor Sensitivity 264
11.3.4.1 ATP 264
11.3.4.2 Proteases 264
11.3.4.3 Bv8/Prokineticin 264
11.3.4.4 Glutamate 265
11.3.4.5 Norepinephrine 265
11.3.5 Long term Sensitization 265
11.3.6 Gene Expression Regulated by NGF 266
11.3.7 Gene Expression Regulated by GDNF 266
11.4 Conclusions 267
12 Transduction and Transmission in Electroreceptor Organs 271
Robert C. Peters and Jean Pierre Denizot
Abstract 271
12.1 Introduction 272
12.1.1 Transduction at Electroreceptor Cells 272
12.1.2 Favorite Species 273
12.2 Types of Electroreceptor Organs 274
12.2.1 General 274
12.2.2 The Sensory Mucous Glands in Monotremes 274
12.2.3 The Microampullary Organs 275
12.2.4 The Tuberous Organs 275
12.2.5 The Ampullae of Lorenzini 275
12.3 How is Transduction at Electroreceptor Cells Studied? 276
12.4 Current Views on Transduction and Transmission in Electroreceptor
Organs 276
12.4.1 Spontaneous Activity and Modulation of Afferent Activity 276
XII I Table of Contents
12.4.2 Monotreme Mucous Gland Electroreceptor Organs 277
12.4.3 Microampullary Organs in Freshwater Organisms 278
12.4.3.1 General 278
12.4.3.2 Patch clamp Experiments 280
12.4.3.3 Indirect Pharmacological Evidence 281
12.4.3.4 The Synaptic Paradox 282
12.4.3.5 The Transduction Model Revisited 283
12.4.4 Tuberous Organs in Freshwater Fishes 285
12.4.5 Ampullae of Lorenzini in Marine Fish 286
12.4.5.1 General 286
12.4.5.2 Ampullae in Pfotosus 287
12.4.5.3 Ampullae in Elasmobranchs 287
12.4.5.4 The Synaptic Paradox 287
12.5 Mucus and Transduction 290
12.6 Conclusions and Open Ends 291
Acknowledgments 293
|
any_adam_object | 1 |
author_GND | (DE-588)129268216 (DE-588)121381021 |
building | Verbundindex |
bvnumber | BV019360465 |
callnumber-first | Q - Science |
callnumber-label | QH601 |
callnumber-raw | QH601 QP455 |
callnumber-search | QH601 QP455 |
callnumber-sort | QH 3601 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WE 5320 |
classification_tum | BIO 770f BIO 750f BIO 220f BIO 782f CHE 887f |
ctrlnum | (OCoLC)56515248 (DE-599)BVBBV019360465 |
dewey-full | 571.74 570 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects 570 - Biology |
dewey-raw | 571.74 570 |
dewey-search | 571.74 570 |
dewey-sort | 3571.74 |
dewey-tens | 570 - Biology |
discipline | Biologie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02104nam a2200577 c 4500</leader><controlfield tag="001">BV019360465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060808 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040810s2004 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">970394004</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527308369</subfield><subfield code="c">Gb. : ca. EUR 139.00 (freier Pr.), ca. CHF 205.00 (freier Pr.)</subfield><subfield code="9">3-527-30836-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56515248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019360465</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH601</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP455</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">571.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5320</subfield><subfield code="0">(DE-625)148305:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 770f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 750f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 220f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 782f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 887f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transduction channels in sensory cells</subfield><subfield code="c">ed. by Stephan Frings and Jonathan Bradley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim, Bergstr</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 304 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular signal transduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models, Animal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensation</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Senses and sensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensory Receptor Cells</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sinneszelle</subfield><subfield code="0">(DE-588)4181546-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transduktion</subfield><subfield code="g">Sinnesphysiologie</subfield><subfield code="0">(DE-588)4575904-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sinneszelle</subfield><subfield code="0">(DE-588)4181546-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transduktion</subfield><subfield code="g">Sinnesphysiologie</subfield><subfield code="0">(DE-588)4575904-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frings, Stephan</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)129268216</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bradley, Jonathan</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121381021</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012824210&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012824210</subfield></datafield></record></collection> |
id | DE-604.BV019360465 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:58:29Z |
institution | BVB |
isbn | 3527308369 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012824210 |
oclc_num | 56515248 |
open_access_boolean | |
owner | DE-M49 DE-BY-TUM DE-11 |
owner_facet | DE-M49 DE-BY-TUM DE-11 |
physical | XVII, 304 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Transduction channels in sensory cells ed. by Stephan Frings and Jonathan Bradley Weinheim, Bergstr WILEY-VCH 2004 XVII, 304 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cellular signal transduction Models, Animal Molecular biology Sensation physiology Senses and sensation Sensory Receptor Cells physiology Signal Transduction physiology Sinneszelle (DE-588)4181546-4 gnd rswk-swf Transduktion Sinnesphysiologie (DE-588)4575904-2 gnd rswk-swf Sinneszelle (DE-588)4181546-4 s Transduktion Sinnesphysiologie (DE-588)4575904-2 s DE-604 Frings, Stephan 1956- Sonstige (DE-588)129268216 oth Bradley, Jonathan Sonstige (DE-588)121381021 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012824210&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Transduction channels in sensory cells Cellular signal transduction Models, Animal Molecular biology Sensation physiology Senses and sensation Sensory Receptor Cells physiology Signal Transduction physiology Sinneszelle (DE-588)4181546-4 gnd Transduktion Sinnesphysiologie (DE-588)4575904-2 gnd |
subject_GND | (DE-588)4181546-4 (DE-588)4575904-2 |
title | Transduction channels in sensory cells |
title_auth | Transduction channels in sensory cells |
title_exact_search | Transduction channels in sensory cells |
title_full | Transduction channels in sensory cells ed. by Stephan Frings and Jonathan Bradley |
title_fullStr | Transduction channels in sensory cells ed. by Stephan Frings and Jonathan Bradley |
title_full_unstemmed | Transduction channels in sensory cells ed. by Stephan Frings and Jonathan Bradley |
title_short | Transduction channels in sensory cells |
title_sort | transduction channels in sensory cells |
topic | Cellular signal transduction Models, Animal Molecular biology Sensation physiology Senses and sensation Sensory Receptor Cells physiology Signal Transduction physiology Sinneszelle (DE-588)4181546-4 gnd Transduktion Sinnesphysiologie (DE-588)4575904-2 gnd |
topic_facet | Cellular signal transduction Models, Animal Molecular biology Sensation physiology Senses and sensation Sensory Receptor Cells physiology Signal Transduction physiology Sinneszelle Transduktion Sinnesphysiologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012824210&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fringsstephan transductionchannelsinsensorycells AT bradleyjonathan transductionchannelsinsensorycells |