Microelectronic circuits:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Oxford Univ. Press
2004
|
Ausgabe: | 5. ed. |
Schriftenreihe: | The Oxford series in electrical and computer engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Getr. Zählung Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 0195142519 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV019357327 | ||
003 | DE-604 | ||
005 | 20070104 | ||
007 | t | ||
008 | 040806s2004 xxuad|| |||| 00||| eng d | ||
010 | |a 2003066178 | ||
020 | |a 0195142519 |9 0-19-514251-9 | ||
035 | |a (OCoLC)53223719 | ||
035 | |a (DE-599)BVBBV019357327 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-573 |a DE-91 |a DE-83 | ||
050 | 0 | |a TK7867 | |
082 | 0 | |a 621.381 |2 22 | |
084 | |a ZN 4900 |0 (DE-625)157417: |2 rvk | ||
084 | |a ELT 430f |2 stub | ||
084 | |a ELT 340f |2 stub | ||
100 | 1 | |a Sedra, Adel S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Microelectronic circuits |c Adel S. Sedra ; Kenneth C. Smith |
250 | |a 5. ed. | ||
264 | 1 | |a New York |b Oxford Univ. Press |c 2004 | |
300 | |a Getr. Zählung |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The Oxford series in electrical and computer engineering | |
650 | 4 | |a Electronic circuits | |
650 | 4 | |a Integrated circuits | |
650 | 0 | 7 | |a Elektronische Schaltung |0 (DE-588)4113419-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikroelektronik |0 (DE-588)4039207-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Mikroelektronik |0 (DE-588)4039207-7 |D s |
689 | 0 | 1 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |D s |
689 | 0 | 2 | |a Elektronische Schaltung |0 (DE-588)4113419-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Elektronische Schaltung |0 (DE-588)4113419-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Mikroelektronik |0 (DE-588)4039207-7 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Smith, Kenneth Carless |e Sonstige |4 oth | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012821179&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012821179 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804132790022701056 |
---|---|
adam_text | FIFTH EDITION MICROELECTRONIC CIRCUITS ADEL S. SEDRA UNIVERSITY OF
WATERLOO KENNETH C. SMITH UNIVERSITY OF TORONTO NEW YORK OXFORD OXFORD
UNIVERSITY PRESS 2004 CONDENSED TABLE OF CONTENTS PREFACE XXIII PART I
DEVICES AND BASIC CIRCUITS 2 1 INTRODUCTION TO ELECTRONICS 5 2
OPERATIONAL AMPLIFIERS 63 3 DIODES 139 4 MOS FIELD-EFFECT TRANSISTORS
(MOSFETS) 235 5 BIPOLAR JUNCTION TRANSISTORS (BJTS) 377 ANALOG AND
DIGITAL INTEGRATED PART II CIRCUITS 542 6 SINGIE-STAGE
INTEGRATED-CIRCUIT AMPLIFIERS 545 7 DIFFERENTIAL AND MULTISTAGE
AMPLIFIERS 687 8 FEEDBACK 791 9 OPERATIONAL-AMPLIFIER AND DATA-CONVERTER
CIRCUITS 871 10 DIGITAL CMOS LOGIC CIRCUITS 949 PART III SELECTED TOPICS
1010 11 MEMORY AND ADVANCED DIGITAL CIRCUITS 1013 12 FILTERS AND TUNED
AMPLIFIERS 7083 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS 1165
14 OUTPUT STAGES AND POWER AMPLIFIERS 1229 APPENDIXES A VLSI FABRICATION
TECHNOLOGY A-1 B TWO-PORT NETWORK PARAMETERS B-1 C SOME USEFUL NETWORK
THEOREMS C-1 D SINGLE-TIME-CONSTANT CIRCUITS D-1 E S-DOMAIN ANALYSIS:
POLES, ZEROS, AND BODE PLOTS E-1 F BIBLIOGRAPHY F-1 G STANDARD
RESISTANCE VALUES AND UNIT PREFIXES G-1 H ANSWERS TO SELECTED PROBLEMS
H-1 INDEX IN-1 PREFACE XXIII ** PART I DEVICES AND BASIC CIRCUITS 2 1
INTRODUCTION TO ELECTRONICS 5 INTRODUCTION 5 1.1 SIGNALS 6 1.2 FREQUENCY
SPECTRUM OF SIGNALS 7 1.3 ANALOG AND DIGITAL SIGNALS 10 1.4 AMPLIFIERS
13 1.4.1 SIGNAL AMPLIFICATION 13 1.4.2 AMPLIFIER CIRCUIT SYMBOL 14 1.4.3
VOLTAGEGAIN 14 1.4.4 POWER GAIN AND CURRENT GAIN 15 1.4.5 EXPRESSING
GAIN IN DECIBELS 15 1.4.6 THE AMPLIFIER POWER SUPPLIES 16 1.4.7
AMPLIFIER SATURATION 18 1.4.8 NONLINEAR TRANSFER CHARACTERISTICS AND
BIASING 19 1.4.9 SYMBOL CONVENTION 22 1.5 CIRCUIT MODELS FOR AMPLIFIERS
23 1.5.1 VOLTAGE AMPLIFIERS 23 1.5.2 CASCADED AMPLIFIERS 25 1.5.3 OTHER
AMPLIFIER TYPES 27 1.5.4 RELATIONSHIPS BETWEEN THE FOUR AMPLIFIER MODELS
27 1.6 FREQUENCY RESPONSE OF AMPLIFIERS 37 1.6.1 MEASURING THE AMPLIFIER
FREQUENCY RESPONSE 31 1.6.2 AMPLIFIER BANDWIDTH 32 1.6.3 EVALUATING THE
FREQUENCY RESPONSE OF AMPLIFIERS 35 1.6.4 SINGLE-TIME-CONSTANT NETWORKS
33 1.6.5 CLASSIFICATION OF AMPLIFIERS BASED ON FREQUENCY RESPONSE 38 1.7
DIGITAL LOGIC INVERTERS 40 1.7.1 FUNCTION OF THE INVERTER 40 1.7.2 THE
VOLTAGE TRANSFER CHARACTERISTIC (VTC) 41 1.7.3 NOISE MARGINS 42 1.7.4
THE IDEAL VTC 43 1.7.5 INVERTER IMPLEMENTATION 43 1.7.6 POWER
DISSIPATION 45 1.1.1 PROPAGATION DELAY 46 1.8 CIRCUIT SIMULATION USING
SPICE 49 SUMMARY 50 PROBLEMS 51 DETAILED TABLE OF CONTENTS VII 2
OPERATIONAL AMPLIFIERS 63 INTRODUCTION 63 2.1 THE IDEAL OP AMP 64 2.1.1
THE OP-AMP TERMINALS 64 2.1.2 FUNCTION AND CHARACTERISTICS OF THE IDEAL
OP AMP 65 2.1.3 DIFFERENTIAL AND COMMON-MODE SIGNALS 67 2.2 THE
INVERTING CONFIGURATION 68 2.2.1 THE CLOESED-LOOP GAIN 69 2.2.2 EFFECT OF
FINITE OPEN-LOOP GAIN 71 2.2.3 INPUT AND OUTPUT RESISTANCES 72 2.2.4 AN
IMPORTANT APPLICATION*THE WEIGHTED SUMMER 75 2.3 THE NONINVERTING
CONFIGURATION 77 2.3.1 THE CLOSED-LOOP GAIN 77 2.3.2 CHARACTERISTICS OF
THE NONINVERTING CONFIGURATION 78 2.3.3 EFFECT OF FINITE OPEN-LOOP GAIN
78 2.3.4 THE VOLTAGE FOLLOWER 79 2.4 DIFFERENCE AMPLIFIERS 81 2.4.1 A
SINGLE OP-AMP DIFFERENCE AMPLIFIER 82 2.4.2 A SUPERIOR CIRCUIT*THE
INSTRUMENTATION AMPLIFIER 85 2.5 EFFECT OF FINITE OPEN-LOOP GAIN AND
BANDWIDTH ON CIRCUIT PERFORMANCE 89 2.5.1 FREQUENCY DEPENDENCE OF THE
OPEN-LOOP GAIN 89 2.5.2 FREQUENCY RESPONSE OF CLOSED-LOOP AMPLIFIERS 91
2.6 LARGE-SIGNAL OPERATION OF OP AMPS 94 2.6.1 OUTPUT VOLTAGE SATURATION
94 2.6.2 OUTPUT CURRENT LIMITS 94 2.6.3 SLEWRATE 95 2.6.4 FULL-POWER
BANDWIDTH 97 2.7 DC IMPERFECTIONS 98 2.7.1 OFFSET VOLTAGE 98 2.7.2 INPUT
BIAS AND OFFSET CURRENTS 102 2.8 INTEGRATORS AND DIFFERENTIATORS 105
2.8.1 THE INVERTING CONFIGURATION WITH GENERAL IMPEDANCES 105 2.8.2 THE
INVERTING INTEGRATOR 707 2.8.3 THE OP-AMP DIFFERENTIATOR 772 2.9 THE
SPICE OP-AMP MODEL AND SIMULATION EXAMPLES 774 2.9.1 LINEAR MACROMODEL
775 2.9.2 NONLINEAR MACROMODEL 779 SUMMARY 722 PROBLEMS 723 3 DIODES 139
INTRODUCTION 139 3.1 THE IDEAL DIODE 140 3.1.1 CURRENT-VOLTAGE
CHARACTERISTIC 140 3.1.2 A SIMPLE APPLICATION: THE RECTIFIER 747 3.1.3
ANOTHER APPLICATION: DIODE LOGIC GATES 144 DETAILED TABLE OF CONTENTS
3.2 TERMINAL CHARACTERISTICS OF JUNCTION DIODES 147 3.2.1 THE
FORWARD-BIAS REGION 148 3.2.2 THE REVERSE-BIAS REGION 152 3.2.3 THE
BREAKDOWN REGION 152 3.3 MODELING THE DIODE FORWARD CHARACTERISTIC 153
3.3.1 THE EXPONENTIAL MODEL 153 3.3.2 GRAPHICAL ANALYSIS USING THE
EXPONENTIAL MODEL 154 3.3.3 ITERATIVE ANALYSIS USING THE EXPONENTIAL
MODEL 154 3.3.4 THE NEEDFOR RAPID ANALYSIS 155 3.3.5 THE
PIECEWISE-LINEAR MODEL 155 3.3.6 THE CONSTANT-VOLTAGE-DROP MODEL 157
3.3.7 THE IDEAL-DIODE MODEL 158 3.3.8 THE SMALL-SIGNAL MODEL 159 3.3.9
USE OF THE DIODE FORWARD DROP IN VOLTAGE REGULATION 163 3.3.10 SUMMARY
165 3.4 OPERATION IN THE REVERSE BREAKDOWN REGION* ZENER DIODES 167
3.4.1 SPECIFYING AND MODELING THE ZENER DIODE 167 3.4.2 USE OF THE ZENER
AS A SHUNT REGULATOR 168 3.4.3 TEMPERATURE EFFECTS 170 3.4.4 A FINAL
REMARK 171 3.5 RECTIFIER CIRCUITS 171 3.5.1 THE HALF-WAVE RECTIFIER 172
3.5.2 THE FUELL-WAVE RECTIFIER 174 3.5.3 THE BRIDGE RECTIFIER 176 3.5.4
THE RECTIFIER WITH A FILTER CAPACITOR* THE PEAK RECTIFIER 177 3.5.5
PRECISION HALF-WAVE RECTIFIER* THE SUPER DIODE 183 3.6 LIMITING AND
CLAMPING CIRCUITS 184 3.6.1 LIMITER CIRCUITS 184 3.6.2 THE CLAMPED
CAPACITOR OR DC RESTORER 187 3.6.3 THE VOLTAGE DOUBLER 189 3.7 PHYSICAL
OPERATION OF DIODES 190 3.7.1 BASIC SEMICONDUCTOR CONCEPTS 190 3.7.2 THE
PN JUNCTION UNDER OPEN-CIRCUIT CONDITIONS 196 3.7.3 THE/W JUNCTION UNDER
REVERSE-BIAS CONDITIONS 199 3.7.4 THE PN JUNCTION IN THE BREAKDOWN
REGION 203 3.7.5 THE PN JUNCTION UNDER FORWARD-BIAS CONDITIONS 204 3.7.6
SUMMARY 208 3.8 SPECIAL DIODE TYPES 209 3.8.1 THE SCHOTTKY-BARRIER DIODE
(SBD) 210 3.8.2 VARACTORS 210 3.8.3 PHOTODIODES 210 3.8.4 LIGHT-EMITTING
DIODES (LEDS) 211 3.9 THE SPICE DIODE MODEL AND SIMULATION EXAMPLES 212
3.9.1 THE DIODE MODEL 212 3.9.2 THE ZENER DIODE MODEL 213 SUMMARY 217
PROBLEMS 218 DETAILED TABLE OF CONTENTS FCY IX 4 MOS FIELD-EFFECT
TRANSISTORS (MOSFETS) 235 INTRODUCTION 235 4.1 DEVICE STRUCTURE AND
PHYSICAL OPERATION 236 4.1.1 DEVICE STRUCTURE 236 4.1.2 OPERATION WITH
NO GATE VOLTAGE 238 4.1.3 CREATING A CHANNEL FOR CURRENT FLOW 238 4.1.4
APPLYING A SMALL V DS 239 4.1.5 OPERATION AS V DS IS INCREASED 241 4.1.6
DERIVATION OF THE I D -V DS RELATIONSHIP 243 4.1.7 THE P-CHANNEL MOSFET
247 4.1.8 COMPLEMENTARY MOS OR CMOS 247 4.1.9 OPERATING THE MOS
TRANSISTOR IN THE SUBTHRESHOLD REGION 248 4.2 CURRENT-VOLTAGE
CHARACTERISTICS 248 4.2.1 CIRCUIT SYMBOL 248 4.2.2 THE I D -V DS
CHARACTERISTICS 249 4.2.3 FINITE OUTPUT RESISTANCE IN SATURATION 253
4.2.4 CHARACTERISTICS OF THE P-CHANNEL MOSFET 256 4.2.5 THE ROLE OF THE
SUBSTRATE*THE BODY EFFECT 258 4.2.6 TEMPERATURE EFFECTS 259 4.2.7
BREAKDOWN AND INPUT PROTECTION 259 4.2.8 SUMMARY 260 4.3 MOSFET CIRCUITS
AT DC 262 4.4 THE MOSFET AS AN AMPLIFIER AND AS A SWITCH 270 A.A. 1
LARGE-SIGNAL OPERATION*THE TRANSFER CHARACTERISTIC 271 4.4.2 GRAPHICAL
DERIVATION OF THE TRANSFER CHARACTERISTIC 273 4.4.3 OPERATION AS A
SWITCH 274 4.4.4 OPERATION AS A LINEAR AMPLIFIER 274 4.4.5 ANALYTICAL
EXPRESSIONS FOR THE TRANSFER CHARACTERISTIC 275 4.4.6 A FINAL REMARK ON
BIASING 280 4.5 BIASING IN MOS AMPLIFIER CIRCUITS 280 4.5.1 BIASING BY
FIXING V GS 280 4.5.2 BIASING BY FIXING V G AND CONNECTING A RESISTANCE
IN THE SOURCE 281 4.5.3 BIASING USING A DRAIN-TO-GATE FEEDBACK RESISTOR
284 4.5.4 BIASING USING A CONSTANT-CURRENT SOURCE 285 4.5.5 A FINAL
REMARK 287 4.6 SMALL-SIGNAL OPERATION AND MODELS 287 4.6.1 THE DC BIAS
POINT 287 4.6.2 THE SIGNAL CURRENT IN THE DRAIN TERMINAL 288 4.6.3 THE
VOLTAGE GAIN 289 4.6.4 SEPARATING THE DC ANALYSIS AND THE SIGNAL
ANALYSIS 290 4.6.5 SMALL-SIGNAL EQUIVALENT-CIRCUIT MODELS 290 4.6.6 THE
TRANSCONDUCTANCE G M 292 4.6.7 THE T EQUIVALENT-CIRCUIT MODEL 295 4.6.8
MODELING THE BODY EFFECT 296 4.6.9 SUMMARY 297 4.1 SINGLE-STAGE MOS
AMPLIFIERS 299 4.7.1 THE BASIC STRUCTURE 299 4.7.2 CHARACTERIZING
AMPLIFIERS 301 4.7.3 THE COMMON-SOURCE (CS) AMPLIFIER 306 4.7.4 THE
COMMON-SOURCE AMPLIFIER WITH A SOURCE RESISTANCE 309 DETAILED TABLE OF
CONTENTS 4.7.5 THE COMMON-GATE (CG) AMPLIFIER 311 4.7.6 THE COMMON-DRAIN
OR SOURCE-FOLLOWER AMPLIFIER 315 4.7.7 SUMMARY AND COMPARISONS 318 4.8
THE MOSFET INTERNAL CAPACITANCES AND HIGH-FREQUENCY MODEL 320 4.8.1 THE
GATE CAPACITIVE EFFECT 321 4.8.2 THE JUNCTION CAPACITANCES 322 4.8.3 THE
HIGH-FREQUENCY MOSFET MODEL 322 4.8.4 THE MOSFET UNITY-GAIN FREQUENCY (F
R ) 324 4.8.5 SUMMARY 325 4.9 FREQUENCY RESPONSE OF THE CS AMPLIFIER 326
4.9.1 THE THREE FREQUENCY BANDS 326 4.9.2 THE HIGH-FREQUENCY RESPONSE
328 4.9.3 THE LOW-FREQUENCY RESPONSE 332 4.9 .4 A FINAL REMARK 336 4.10
THE CMOS DIGITAL LOGIC INVERTER 336 4.10.1 CIRCUIT OPERATION 337 4.10.2
THE VOLTAGE TRANSFER CHARACTERISTIC 339 4.10.3 DYNAMIC OPERATION 342
4.10.4 CURRENT FLOW AND POWER DISSIPATION 345 4.10.5 SUMMARY 346 4.11
THE DEPLETION-TYPE MOSFET 346 4.12 THE SPICE MOSFET MODEL AND SIMULATION
EXAMPLE 351 4.12.1 MOSFET MODELS 351 4.12.2 MOSFET MODEL PARAMETERS 352
SUMMARY 359 PROBLEMS 360 5 BIPOLAR JUNCTION TRANSISTORS (BJTS) 377
INTRODUCTION 377 5.1 DEVICE STRUCTURE AND PHYSICAL OPERATION 378 5.1.1
SIMPLIFIED STRUCTURE AND MODES OF OPERATION 378 5.1.2 OPERATION OF THE
NPN TRANSISTOR IN THE ACTIVE MODE 380 5.1.3 STRUCTURE OF ACTUAL
TRANSISTORS 386 5.1.4 THE EBERS-MOLL (EM) MODEL 387 5.1.5 OPERATION IN
THE SATURATION MODE 390 5.1.6 THE PNP TRANSISTOR 391 5.2 CURRENT-VOLTAGE
CHARACTERISTICS 392 5.2.1 CIRCUIT SYMBOLS AND CONVENTIONS 392 5.2.2
GRAPHICAL REPRESENTATION OF TRANSISTOR CHARACTERISTICS 397 5.2.3
DEPENDENCE OF I C ON THE COLLECTOR VOLTAGE*THE EARLY EFFECT 399 5.2.4
THE COMMON-EMITTER CHARACTERISTICS 401 5.2.5 TRANSISTOR BREAKDOWN 406
5.2.6 SUMMARY 407 5.3 THE BJT AS AN AMPLIFIER AND AS A SWITCH 407 5.3.1
LARGE-SIGNAL OPERATION*THE TRANSFER CHARACTERISTIC 410 5.3.2 AMPLIFIER
GAIN 412 5.3.3 GRAPHICAL ANALYSIS 415 5.3.4 OPERATION AS A SWITCH 419
5.4 BJT CIRCUITS AT DC 421 DETAILED TABLE OF CONTENTS 5.5 BIASING IN BJT
AMPLIFIER CIRCUITS 436 5.5.1 THE CLASSICAL DISCRETE-CIRCUIT BIAS
ARRANGEMENT 436 5.5.2 A TWO-POWER-SUPPLY VERSION OF THE CLASSICAL BIAS
ARRANGEMENT 440 5.5.3 BIASING USING A COLLECTOR-TO-BASE FEEDBACK
RESISTOR 441 5.5.4 BIASING USING A CONSTANT-CURRENT SOURCE 442 5.6
SMALL-SIGNAL OPERATION AND MODELS 443 5.6.1 THE COLLECTOR CURRENT AND
THE TRANSCONDUCTANCE 443 5.6.2 THE BASE CURRENT AND THE INPUT RESISTANCE
AT THE BASE 445 5.6.3 THE EMITTER CURRENT AND THE INPUT RESISTANCE AT
THE EMITTER 446 5.6.4 VOLTAGE GAIN 447 5.6.5 SEPARATING THE SIGNAL AND
THE DC QUANTITIES 448 5.6.6 THE HYBRID-7R MODEL 448 5.6.7 THE T MODEL
449 5.6.8 APPLICATION OF THE SMALL-SIGNAL EQUIVALENT CIRCUITS 450 5.6.9
PERFORMING SMALL-SIGNAL ANALYSIS DIRECTLY ON THE CIRCUIT DIAGRAM 457
5.6.10 AUGMENTING THE SMALL-SIGNAL MODELS TO ACCOUNT FOR THE EARLY
EFFECT 457 5.6.11 SUMMARY 458 5.7 SINGLE-STAGE BJT AMPLIFIERS 460 5.7.1
THE BASIC STRUCTURE 460 5.7.2 CHARACTERIZING BJT AMPLIFIERS 461 5.7.3
THE COMMON-EMITTER (CE) AMPLIFIER 467 5.7.4 THE COMMON-EMITTER AMPLIFIER
WITH AN EMITTER RESISTANCE 470 5.7.5 THE COMMON-BASE (CB) AMPLIFIER 475
5.7.6 THE COMMON-COLLECTOR (CC) AMPLIFIER OR EMITTER FOLLOWER 478 5.7.7
SUMMARY AND COMPARISONS 483 5.8 THE BJT INTERNAL CAPACITANCES AND
HIGH-FREQUENCY MODEL 485 5.8.1 THE BASE-CHARGING OR DIFFUSION
CAPACITANCE C DE 486 5.8.2 THE BASE-EMITTER JUNCTION CAPACITANCE C JE
486 5.8.3 THE COLLECTOR-BASE JUNCTION CAPACITANCE C SS 487 5.8.4 THE
HIGH-FREQUENCY HYBRID-W MODEL 487 5.8.5 THE CUTOFF FREQUENCY 487 5.8.6
SUMMARY 490 5.9 FREQUENCY RESPONSE OF THE COMMON-EMITTER AMPLIFIER 491
5.9.1 THE THREE FREQUENCY BANDS 491 5.9.2 THE HIGH-FREQUENCY RESPONSE
492 5.9.3 THE LOW-FREQUENCY RESPONSE 497 5.9.4 A FINAL REMARK 503 5.10
THE BASIC BJT DIGITAL LOGIC INVERTER 503 5.10.1 THE VOLTAGE TRANSFER
CHARACTERISTIC 504 5.10.2 SATURATED VERSUS NONSATURATED BJT DIGITAL
CIRCUITS 505 5.11 THE SPICE BJT MODEL AND SIMULATION EXAMPLES 507 5.11.1
THE SPICE EBERS-MOLL MODEL OF THE BJT 507 5.11.2 THE SPICE GUMMEL-POON
MODEL OF THE BJT 509 5.11.3 THE SPICE BJT MODEL PARAMETERS 510 5.11.4
THE BJT MODEL PARAMETERS BF AND BR IN SPICE 510 DETAILED TABLE OF
CONTENTS SUMMARY 516 PROBLEMS 517 __ ANALOG AND DIGITAL INTEGRATED *
PART II CIRCUITS 542 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS 545
INTRODUCTION 545 6.1 IC DESIGN PHILOSOPHY 546 6.2
COMPARISONOFTHEMOSFETANDTHEBJT 547 6.2.1 TYPICAL VALUES OF MOSFET
PARAMETERS 547 6.2.2 TYPICAL VALUES OF IC BJT PARAMETERS 548 6.2.3
COMPARISON OF IMPORTANT CHARACTERISTICS 550 6.2.4 COMBINING MOS AND
BIPOLAR TRANSISTORS*BICMOS CIRCUITS 561 6.2.5 VALIDITY OF THE SQUARE-LAW
MOSFET MODEL 562 6.3 IC BIASING*CURRENT SOURCES, CURRENT MIRRORS, AND
CURRENT-STEERING CIRCUITS 562 6.3.1 THE BASIC MOSFET CURRENT SOURCE 562
6.3.2 MOS CURRENT-STEERING CIRCUITS 565 6.3.3 BJT CIRCUITS 567 6.4
HIGH-FREQUENCY RESPONSE*GENERAL CONSIDERATIONS 571 6.4.1 THE
HIGH-FREQUENCY GAIN FUNCTION 572 6.4.2 DETERMINING THE 3-DB FREQUENCY/ W
573 6.4.3 USING OPEN-CIRCUIT TIME CONSTANTS FOR THE APPROXIMATE
DETERMINATION OFF H 575 6.4.4 MILLER S THEOREM 578 6.5 THE COMMON-SOURCE
AND COMMON-EMITTER AMPLIFIERS WITH ACTIVE LOADS 582 6.5.1 THE
COMMON-SOURCE CIRCUIT 582 6.5.2 CMOS IMPLEMENTATION OF THE COMMON-SOURCE
AMPLIFIER 583 6.5.3 THE COMMON-EMITTER CIRCUIT 588 6.6 HIGH-FREQUENCY
RESPONSE OF THE CS AND CE AMPLIFIERS 588 6.6.1 ANALYSIS USING MILLER S
THEOREM 589 6.6.2 ANALYSIS USING OPEN-CIRCUIT TIME CONSTANTS 590 6.6.3
EXACT ANALYSIS 591 6.6.4 ADAPTING THE FORMULAS FOR THE CASE OF THE CE
AMPLIFIER 595 6.6.5 THE SITUATION WHEN R, IG IS LOW 597 6.7 THE
COMMON-GATE AND COMMON-BASE AMPLIFIERS WITH ACTIVE LOADS 600 6.7.1 THE
COMMON-GATE AMPLIFIER 600 6.7.2 THE COMMON-BASE AMPLIFIER 610 6.7.3 A
CONCLUDING REMARK 613 6.8 THE CASCODE AMPLIFIER 613 6.8.1 THE MOS
CASCODE 614 6.8.2 FREQUENCY RESPONSE OF THE MOS CASCODE 618 6.8.3 THE
BJT CASCODE 623 6.8.4 A CASCODE CURRENT SOURCE 625 6.8.5 DOUBLE
CASCODING 626 6.8.6 THE FOLDED CASCODE 627 6.8.7 BICMOS CASCODES 628
DETAILED TABLE OF CONTENTS !_: X 6.9 THE CS AND CE AMPLIFIERS WITH
SOURCE (EMITTER) DEGENERATION 629 6.9.1 THE CS AMPLIFIER WITH A SOURCE
RESISTANCE 629 6.9.2 THE CE AMPLIFIER WITH AN EMITTER RESISTANCE 633
6.10 THE SOURCE AND EMITTER FOLLOWERS 635 6.10.1 THE SOURCE FOLLOWER 635
6.10.2 FREQUENCY RESPONSE OF THE SOURCE FOLLOWER 637 6.10.3 THE EMITTER
FOLLOWER 639 6.11 SOME USEFUL TRANSISTOR PAIRINGS 641 ~~ 6.11.1 THE CD -
CS, CC-CE AND CD-CE CONFIGURATIONS 641 6.11.2 THE DARLINGTON
CONFIGURATION 645 6.11.3 THE CC-CB AND CD-CG CONFIGURATIONS 646 6.12
CURRENT-MIRROR CIRCUITS WITH IMPROVED PERFORMANCE 649 6.12.1 CASCODE MOS
MIRRORS 649 6.12.2 A BIPOLAR MIRROR WITH BASE-CURRENT COMPENSATION 650
6.12.3 THE WILSON CURRENT MIRROR 651 6.12.4 THE WILSON MOS MIRROR 652
6.12.5 THE WIDLAR CURRENT SOURCE 653 6.13 SPICE SIMULATION EXAMPLES 656
SUMMARY 665 PROBLEMS 666 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS 687
INTRODUCTION 687 7.1 THE MOS DIFFERENTIAL PAIR 688 7.1.1 OPERATION WITH
A COMMON-MODE INPUT VOLTAGE 689 7.1.2 OPERATION WITH A DIFFERENTIAL
INPUT VOLTAGE 691 7.1.3 LARGE-SIGNAL OPERATION 693 7.2 SMALL-SIGNAL
OPERATION OF THE MOS DIFFERENTIAL PAIR 696 7.2.1 DIFFERENTIAL GAIN 697
7.2.2 COMMON-MODE GAIN AND COMMON-MODE REJECTION RATIO (CMRR) 700 7.3
THE BJT DIFFERENTIAL PAIR 704 7.3.1 BASIC OPERATION 704 7.3.2
LARGE-SIGNAL OPERATION 707 7.3.3 SMALL-SIGNAL OPERATION 709 7.4 OTHER
NONIDEAL CHARACTERISTICS OF THE DIFFERENTIAL AMPLIFIER 720 7.4.1 INPUT
OFFSET VOLTAGE OF THE MOS DIFFERENTIAL PAIR 720 7.4.2 INPUT OFFSET
VOLTAGE OF THE BIPOLAR DIFFERENTIAL PAIR 723 7.4.3 INPUT BIAS AND OFFSET
CURRENTS OF THE BIPOLAR PAIR 725 1.4.4 INPUT COMMON-MODE RANGE 726 7.4.5
A CONCLUDING REMARK 726 7.5 THE DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD
727 7.5.1 DIFFERENTIAL-TO-SINGLE-ENDEDCONVERSION 727 7.5.2 THE
ACTIVE-LOADED MOS DIFFERENTIAL PAIR 728 7.5.3 DIFFERENTIAL GAIN OF THE
ACTIVE-LOADED MOS PAIR 729 7.5.4 COMMON-MODE GAIN AND CMRR 732 7.5.5 THE
BIPOLAR DIFFERENTIAL PAIR WITH ACTIVE LOAD 733 XIV J- : DETAILED TABLE
OF CONTENTS 7.6 FREQUENCY RESPONSE OF THE DIFFERENTIAL AMPLIFIER 740
7.6.1 ANALYSIS OF THE RESISTIVELY LOADED MOS AMPLIFIER 740 7.6.2
ANALYSIS OF THE ACTIVE-LOADED MOS AMPLIFIER 744 1.1 MULTISTAGE
AMPLIFIERS 749 7.7.1 A TWO-STAGE CMOS OP AMP 749 7.7.2 A BIPOLAR OP AMP
758 7.8 SPICE SIMULATION EXAMPLE 767 SUMMARY 773 PROBLEMS 775 8 FEEDBACK
791 INTRODUCTION 791 8.1 THE GENERAL FEEDBACK STRUCTURE 792 8.2 SOME
PROPERTIES OF NEGATIVE FEEDBACK 795 8.2.1 GAIN DESENSITIVITY 795 8.2.2
BANDWIDTH EXTENSION 795 8.2.3 NOISE REDUCTION 796 8.2.4 REDUCTION IN
NONLINEAR DISTORTION 797 8.3 THE FOUR BASIC FEEDBACK TOPOLOGIES 798
8.3.1 VOLTAGE AMPLIFIERS 799 8.3.2 CURRENT AMPLIFIERS 799 8.3.3
TRANSCONDUCTANCE AMPLIFIERS 801 8.3.4 TRANSRESISTANCE AMPLIFIERS #02 8.4
THE SERIES-SHUNT FEEDBACK AMPLIFIER 802 8.4.1 THE IDEAL SITUATION 802
8.4.2 THE PRACTICAL SITUATION 804 8.4.3 SUMMARY 07 8.5 THE
SERIES-SERIES FEEDBACK AMPLIFIER 811 8.5.1 THE IDEAL CASE 811 8.5.2 THE
PRACTICAL CASE 812 8.5.3 SUMMARY 814 8.6 THE SHUNT-SHUNT AND
SHUNT-SERIES FEEDBACK AMPLIFIERS 818 8.6.1 THE SHUNT-SHUNT CONFIGURATION
819 8.6.2 AN IMPORTANT NOTE 23 8.6.3 THE SHUNT-SERIES CONFIGURATION 823
8.6.4 SUMMARY OF RESULTS 831 8.7 DETERMINING THE LOOP GAIN 831 8.7.1 AN
ALTERNATIVE APPROACH FOR FINDING ASS 831 8.7.2 EQUIVALENCE OF CIRCUITS
FROM A FEEDBACK-LOOP POINT OF VIEW 833 8.8 THE STABILITY PROBLEM 834
8.8.1 TRANSFER FUNCTION OF THE FEEDBACK AMPLIFIER 834 8.8.2 THE NYQUIST
PLOT 835 8.9 EFFECT OF FEEDBACK ON THE AMPLIFIER POLES 836 8.9.1
STABILITY AND POLE LOCATION 837 8.9.2 POLES OF THE FEEDBACK AMPLIFIER
838 8.9.3 AMPLIFIER WITH SINGLE-POLE RESPONSE 838 8.9.4 AMPLIFIER WITH
TWO-POLE RESPONSE 839 8.9.5 AMPLIFIERS WITH THREE OR MORE POLES 843
DETAILED TABLE OF CONTENTS XV 8.10 STABILITY STUDY USING BODE PLOTS 845
8.10.1 GAIN AND PHASE MARGINS 845 8.10.2 EFFECT OF PHASE MARGIN ON
CLOSED-LOOP RESPONSE 846 8.10.3 AN ALTERNATIVE APPROACH FOR
INVESTIGATING STABILITY 847 8.11 FREQUENCY COMPENSATION 849 8.11.1
THEORY 850 8.11.2 IMPLEMENTATION 851 8.11.3 MILLER COMPENSATION AND POLE
SPLITTING 852 8.12 SPICE SIMULATION EXAMPLE 855 SUMMARY 859 PROBLEMS 860
9 OPERATIONAL-AMPLIFIER AND DATA-CONVERTER CIRCUITS 871 INTRODUCTION 871
9.1 THE TWO-STAGE CMOS OP AMP 872 9.1.1 THE CIRCUIT 872 9.1.2 INPUT
COMMON-MODE RANGE AND OUTPUT SWING 873 9.1.3 VORTAGE GAIN 874 9.1.4
FREQUENCY RESPONSE 876 9.1.5 SLEWRATE 879 9.2 THE FOLDED-CASCODE CMOS OP
AMP 883 9.2.1 THE CIRCUIT 883 9.2.2 INPUT COMMON-MODE RANGE AND THE
OUTPUT VOLTAGE SWING 885 9.2.3 VOLTAGE GAIN 886 9.2.4 FREQUENCY RESPONSE
888 9.2.5 SLEWRATE 888 9.2.6 INCREASING THE INPUT COMMON-MODE RANGE:
RAIL-TO-RAIL INPUT OPERATION 890 9.2.7 INCREASING THE OUTPUT VOLTAGE
RANGE: THE WIDE-SWING CURRENT MIRROR 892 9.3 THE 741 OP-AMP CIRCUIT 893
9.3.1 BIAS CIRCUIT 893 9.3.2 SHORT-CIRCUIT PROTECTION CIRCUITRY 895
9.3.3 THE INPUT STAGE 895 9.3.4 THE SECOND STAGE 895 9.3.5 THE OUTPUT
STAGE 896 9.3.6 DEVICE PARAMETERS 898 9.4 DC ANALYSISOFTHE741 899 9.4.1
REFERENCE BIAS CURRENT 899 9.4.2 INPUT-STAGE BIAS 899 9.4.3 INPUT BIAS
AND OFFSET CURRENTS 902 9.4.4 INPUT OFFSET VOLTAGE 902 9.4.5 INPUT
COMMON-MODE RANGE 902 9.4.6 SECOND-STAGE BIAS 902 9.4.7 OUTPUT-STAGE
BIAS 903 9.4.8 SUMMARY 904 9.5 SMALL-SIGNAL ANALYSIS OF THE 741 905
9.5.1 THE INPUT STAGE 905 9.5.2 THE SECOND STAGE 910 9.5.3 THE OUTPUT
STAGE 912 CONTENTS 9.6 GAIN, FREQUENCY RESPONSE, AND SLEW RATE OF THE
741 917 9.6.1 SMALL-SIGNAL GAIN 917 9.6.2 FREQUENCY RESPONSE 917 9.6.3 A
SIMPLIFIED MODEL 918 9.6.4 SLEW RATE 919 9.6.5 RELATIONSHIP BETWEEN/,
AND SR 920 9.7 DATA CONVERTERS*AN INTRODUCTION 922 9.7.1 DIGITAL
PROCESSING OF SIGNALS 922 9.7.2 SAMPLING OF ANALOG SIGNALS 922 9.7.3
SIGNAL QUANTIZATION 924 9.7 .4 THE A/D AND D/A CONVERTERS AS FUNCTIONAL
BLOCKS 924 9.8 D/A CONVERTER CIRCUITS 925 9.8.1 BASIC CIRCUIT USING
BINARY-WEIGHTED RESISTORS 925 9.8.2 #-2AE LADDERS 926 9.8.3 A PRACTICAL
CIRCUIT IMPLEMENTATION 927 9.8.4 CURRENT SWITCHES 928 9.9 A/D CONVERTER
CIRCUITS 929 9.9.1 THE FEEDBACK-TYPE CONVERTER 929 9.9.2 THE DUAL-SLOPE
A/D CONVERTER 930 9.9.3 THE PARALLEL OR FLASH CONVERTER 932 9.9.4 THE
CHARGE-REDISTRIBUTION CONVERTER 932 9.10 SPICE SIMULATION EXAMPLE 934
SUMMARY 940 PROBLEMS 941 DIGITAL CMOS LOGIC CIRCUITS 949 INTRODUCTION
949 10.1 DIGITAL CIRCUIT DESIGN: AN OVERVIEW 950 10.1.1 DIGITAL IC
TECHNOLOGIES AND LOGIC-CIRCUIT FAMILIES 950 10.1.2 LOGIC-CIRCUIT
CHARACTERIZATION 952 10.1.3 STYLES FOR DIGITAL SYSTEM DESIGN 954 10.1.4
DESIGN ABSTRACTION AND COMPUTER AIDS 955 10.2 DESIGN AND PERFORMANCE
ANALYSIS OF THE CMOS INVERTER 955 10.2.1 CIRCUIT STRUCTURE 955 10.2.2
STATIC OPERATION 956 10.2.3 DYNAMIC OPERATION 958 10.2.4 DYNAMIC POWER
DISSIPATION 961 10.3 CMOS LOGIC-GATE CIRCUITS 963 10.3.1 BASIC STRUCTURE
963 10.3.2 THE TWO-INPUT NOR GATE 966 10.3.3 THE TWO-INPUT NAND GATE 966
10.3.4 A COMPLEX GATE 967 10.3.5 OBTAINING THE PUN FROM THE PDN AND VICE
VERSA 968 10.3.6 THE EXCLUSIVE-OR FUNCTION 969 10.3.7 SUMMARY OF THE
SYNTHESIS METHOD 970 10.3.8 TRANSISTOR SIZING 970 10.3.9 EFFECTS OF
FAN-IN AND FAN-OUT ON PROPAGATION DELAY 973 10.4 PSEUDO-NMOS LOGIC
CIRCUITS 974 10.4.1 THE PSEUDO-NMOS INVERTER 974 10.4.2 STATIC
CHARACTERISTICS 975 DETAILED TABLE OF CONTENTS 10.4.3 DERIVATION OF THE
VTC 976 10.4.4 DYNAMIC OPERATION 979 10.4.5 DESIGN 979 10.4.6 GATE
CIRCUITS 980 10.4.7 CONCLUDING REMARKS 980 PASS-TRANSISTOR LOGIC
CIRCUITS 982 10.5.1 AN ESSENTIAL DESIGN REQUIREMENT 983 10.5.2 OPERATION
WITH NMOS TRANSISTORS AS SWITCHES 984 10.5.3 THE USE OF CMOS
TRANSMISSION GATES AS SWITCHES 988 10.5.4 PASS-TRANSISTOR LOGIC CIRCUIT
EXAMPLES 990 10.5.5 A FINAL REMARK 991 DYNAMIC LOGIC CIRCUITS 991 10.6.1
BASIC PRINCIPLE 992 10.6.2 NONIDEAL EFFECTS 993 10.6.3 DOMINO CMOS LOGIC
996 10.6.4 CONCLUDING REMARKS 998 SPIEE SIMULATION EXAMPLE 998 SUMMARY
1002 PROBLEMS 1002 PART I SELECTED TOPICS 1010 11 MEMORY AND ADVANCED
DIGITAL CIRCUITS 1013 INTRODUCTION 1013 11.1 LATCHES AND FLIP-FLOPS 1014
11.1.1 THELATCH 1014 11.1.2 THE SR FLIP-FLOP 1015 11.1.3 CMOS
IMPLEMENTATION OF SR FLIP-FLOPS 1016 11. 1 .4 A SIMPLER CMOS
IMPLEMENTATION OF THE CLOCKED SR FLIP- FLOP 1019 11.1.5 D FLIP-FLOP
CIRCUITS 1019 11.2 MULTIVIBRATOR CIRCUITS 1021 11.2.1 A CMOS MONOSTABLE
CIRCUIT 1022 11.2.2 AN ASTABLE CIRCUIT 1026 11.2.3 THE RING OSCILLATOR
1027 11.3 SEMICONDUCTOR MEMORIES: TYPES AND ARCHITECTURES 1028 11.3.1
MEMORY-CHIP ORGANIZATION 1028 11.3.2 MEMORY-CHIP TIMING 1030 11.4
RANDOM- ACCESS MEMORY (RAM) CELLS 1031 11.4.1 STATIC MEMORY CELL 1031
11.4.2 DYNAMIC MEMORY CELL 1036 1 1.5 SENSE AMPLIFIERS AND ADDRESS
DECODERS 1038 11.5.1 THE SENSE AMPLIFIER 1038 11.5.2 THE ROW-ADDRESS
DECODER 1043 11.5.3 THE COLUMN-ADDRESS DECODER 1045 11.6 READ-ONLY
MEMORY (ROM) 1046 11.6.1 A MOS ROM 1047 11.6.2 MASK-PROGRAMMABLE ROMS
1049 11.6.3 PROGRAMMABLE ROMS (PROMS AND EPROMS) 1049 10.5 10.6 10.7 OF
CONTENTS 11.7 EMITTER-COUPLED LOGIC (ECL) 1052 11.7.1 THE BASIC
PRINCIPLE 1052 11.7.2 ECLFAMILIES 1053 11.7.3 THE BASIC GATE CIRCUIT
1053 11.7.4 VORTAGE TRANSFER CHARACTERISTICS 1057 11.7.5 FAN-OUT 1061 1
1.7.6 SPEED OF OPERATION AND SIGNAL TRANSMISSION 1062 11.7.7 POWER
DISSIPATION 1063 11.7.8 THERMAL EFFECTS 1063 11.7.9 THE WIRED-OR
CAPABILITY 1066 11.7.10 SOME FINAL REMARKS 1066 11.8 BICMOS DIGITAL
CIRCUITS 1067 11.8.1 THE BICMOS INVERTER 1067 11.8.2 DYNAMIC OPERATION
1069 11.8.3 BICMOS LOGIC GATES 1070 11.9 SPICE SIMULATION EXAMPLE 1071
SUMMARY 1076 PROBLEMS 1077 FILTERS AND TUNED AMPLIFIERS 1083
INTRODUCTION 1083 12.1 FILTER TRANSMISSION, TYPES, AND SPECIFICATION
1084 12.1.1 FILTER TRANSMISSION 1084 12.1.2 FILTER TYPES 1085 12.1.3
FILTER SPECIFICATION 1085 12.2 THE FILTER TRANSFER FUNCTION 1088 12.3
BUTTERWORTH AND CHEBYSHEV FILTERS 1091 12.3.1 THE BUTTERWORTH FILTER
1091 12.3.2 THE CHEBYSHEV FILTER 1095 12.4 FIRST-ORDER AND SECOND-ORDER
FILTER FUNCTIONS 1098 12.4.1 FIRST-ORDER FILTERS 1098 12.4.2
SECOND-ORDER FILTER FUNCTIONS 1101 12.5 THE SECOND-ORDER LCR RESONATOR
1106 12.5.1 THE RESONATOR NATURAL MODES 1106 12.5.2 REALIZATION OF
TRANSMISSION ZEROS 1107 12.5.3 REALIZATION OF THE LOW-PASS FUNCTION 7705
12.5.4 REALIZATION OF THE HIGH-PASS FUNCTION 1108 12.5.5 REALIZATION OF
THE BANDPASS FUNCTION 1108 1 2.5.6 REALIZATION OF THE NOTCH FUNCTIONS
1110 12.5.7 REALIZATION OF THE ALL-PASS FUNCTION 1111 12.6 SECOND-ORDER
ACTIVE FILTERS BASED ON INDUCTOR REPLACEMENT 1112 12.6.1 THE ANTONIOU
INDUCTANCE-SIMULATION CIRCUIT 1112 12.6.2 THE OPAMP-RC RESONATOR 1114
12.6.3 REALIZATION OF THE VARIOUS FILTER TYPES 1114 12.6.4 THE ALL-PASS
CIRCUIT 1118 12.7 SECOND-ORDER ACTIVE FILTERS BASED ON THE
TWO-INTEGRATOR-LOOP TOPOLOGY 1120 12.7.1 DERIVATION OF THE
TWO-INTEGRATOR-LOOP BIQUAD 1120 12.7.2 CIRCUIT IMPLEMENTATION 1122
DETAILED TABLE OF CONTENTS * * XIX 12.7.3 AN ALTERNATIVE
TWO-INTEGRATOR-LOOP BIQUAD CIRCUIT 1123 12JA FINAL REMARKS 1125 12.8
SINGLE-AMPLIFIER BIQUADRATIC ACTIVE FILTERS 1125 12.8.1 SYNTHESIS OF THE
FEEDBACK LOOP 1126 12.8.2 INJECTING THE INPUT SIGNAL 1128 12.8.3
GENERATION OF EQUIVALENT FEEDBACK LOOPS 1130 12.9 SENSITIVITY 1133 12.10
SWITCHED-CAPACITOR FILTERS 1136 12.10.1 THE BASIC PRINCIPLE 1136 12.10.2
PRACTICAL CIRCUITS 1137 12.10.3 A FINAL REMARK 1141 12.11 TUNED
AMPLIFIERS 1141 12.11.1 THE BASIC PRINCIPLE 1141 12.11.2 INDUCTOR LOSSES
1143 12.11.3 USE OF TRANSFORMERS 1144 12.11.4 AMPLIFIERS WITH MULTIPLE
TUNED CIRCUITS 1145 12.11.5 THE CASCODE AND THE CC-CB CASCADE 1146
12.11.6 SYNCHRONOUS TUNING 1147 12.11.7 STAGGER-TUNING 1148 12.12 SPICE
SIMULATION EXAMPLES 1152 SUMMARY 1158 PROBLEMS 1159 13 SIGNAL GENERATORS
AND WAVEFORM-SHAPING CIRCUITS 1165 INTRODUCTION 1165 13.1 BASIC
PRINCIPLES OF SINUSOIDAL OSCILLATORS 1166 13.1.1 THE OSCILLATOR FEEDBACK
LOOP 1166 13.1.2 THE OSCILLATION CRITERION 1167 13.1.3 NONLINEAR
AMPLITUDE CONTROL 1168 13.1.4 A POPULAER LIMITER CIRCUIT FOR AMPLITUDE
CONTROL 1169 13.2 OP AMP-RC OSCILLATOR CIRCUITS 1171 13.2.1 THE
WIEN-BRIDGE OSCILLATOR 1171 13.2.2 THE PHASE-SHIFT OSCILLATOR 1174
13.2.3 THE QUADRATURE OSCILLATOR 1176 13.2.4 THE ACTIVE-FILTER-TUNED
OSCILLATOR 1177 13.2.5 A FINAL REMARK 7/79 13.3 LC AND CRYSTAL
OSCILLATORS 1179 13.3.1 LC-TUNED OSCILLATORS 1179 13.3.2 CRYSTAL
OSCILLATORS 1182 13.4 BISTABLE MULTIVIBRATORS 1185 13.4.1 THE FEEDBACK
LOOP 1185 13.4.2 TRANSFER CHARACTERISTICS OF THE BISTABLE CIRCUIT 1186
13.4.3 TRIGGERING THE BISTABLE CIRCUIT 1187 13.4.4 THE BISTABLE CIRCUIT
AS A MEMORY ELEMENT 1188 13.4.5 A BISTABLE CIRCUIT WITH NONINVERTING
TRANSFER CHARACTERISTICS 1188 13.4.6 APPLICATION OF THE BISTABLE CIRCUIT
AS A COMPARATOR 1189 13.4.7 MAKING THE OUTPUT LEVELS MORE PRECISE 1191 X
X WM DETAILE D TABLE OF CONTENTS 13.5 GENERATION OF SQUARE AND
TRIANGULAER WAVEFORMS USING ASTABLE MULTIVIBRATORS 1192 13.5.1 OPERATION
OF THE ASTABLE MULTIVIBRATOR 1192 13.5.2 GENERATION OF TRIANGULAER
WAVEFORMS 1194 13.6 GENERATION OF A STANDARDIZED PULSE*THE MONOSTABLE
MULTIVIBRATOR 1196 13.7 INTEGRATED-CIRCUIT TIMERS 1198 13.7.1 THE 555
CIRCUIT 1198 13.7.2 IMPLEMENTING A MONOSTABLE MULTIVIBRATOR USING THE
555 IC 1199 13.7.3 AN ASTABLE MULTIVIBRATOR USING THE 555 IC 1201 13.8
NONLINEAR WAVEFORM-SHAPING CIRCUITS 1203 13.8.1 THE BREAKPOINT METHOD
1203 13.8.2 THE NONLINEAR-AMPLIFICATION METHOD 1205 13.9 PRECISION
RECTIFIER CIRCUITS 1206 13.9.1 PRECISION HALF-WAVE RECTIFIER-THE
SUPERDIODE 1207 13.9.2 AN ALTERNATIVE CIRCUIT 1208 13.9.3 AN
APPLICATION: MEASURING AC VOLTAGES 1209 13.9.4 PRECISION FULL-WAVE
RECTIFIER 1210 13.9.5 A PRECISION BRIDGE RECTIFIER FOR INSTRUMENTATION
APPLICATIONS 1212 13.9.6 PRECISION PEAK RECTIFIERS 1213 13.9.7 A
BUFFERED PRECISION PEAK DETECTOR 1213 13.9.8 A PRECISION CLAMPING
CIRCUIT 1214 13.10 SPICE SIMULATION EXAMPLES 1214 SUMMARY 1219 PROBLEMS
1220 14 OUTPUT STAGES AND POWER AMPLIFIERS 1229 INTRODUCTION 1229 14.1
CLASSIFICATION OF OUTPUT STAGES 1230 14.2 CLASS A OUTPUT STAGE 1231
14.2.1 TRANSFER CHARACTERISTIC 1231 14.2.2 SIGNAL WAVEFORMS 1233 14.2.3
POWER DISSIPATION 1233 14.2.4 POWER-CONVERSION EFFICIENCY 1235 14.3
CLASS B OUTPUT STAGE 2235 14.3.1 CIRCUIT OPERATION 1236 14.3.2 TRANSFER
CHARACTERISTIC 1236 14.3.3 POWER-CONVERSION EFFICIENCY 2236 14.3.4 POWER
DISSIPATION 1238 14.3.5 REDUCING CROSSOVER DISTORTION 1240 14.3.6
SINGLE-SUPPLY OPERATION 1240 14.4 CLASS AB OUTPUT STAGE 724/ 14.4.1
CIRCUIT OPERATION 1242 14.4.2 OUTPUT RESISTANCE 1243 14.5 BIASING THE
CLASS AB CIRCUIT 7244 14.5.1 BIASING USING DIODES 1244 14.5.2 BIASING
USING THE V BE MULTIPLIER 1246 14.6 POWER BJTS 1249 14.6.1 JUNCTION
TEMPERATURE 1249 14.6.2 THERMAL RESISTANCE 1249 DETAILED TABLE OF
CONTENTS 14.6.3 POWER DISSIPATION VERSUS TEMPERATURE 1250 14.6.4
TRANSISTOR CASE AND HEAT SINK 1251 14.6.5 THE BJT SAFE OPERATING AREA
1254 14.6.6 PARAMETER VALUES OF POWER TRANSISTORS 1255 14.7 VARIATIONS
ON THE CLASS AB CONFIGURATION 1256 14.7.1 USEOFLNPUT EMITTER FOLLOWERS
1256 14.7.2 USEOF COMPOUND DEVICES 1257 14.7.3 SHORT-CIRCUIT PROTECTION
1259 14.7 .4 THERMAL SHUTDOWN 1260 14.8 IC POWER AMPLIFIERS 1261 14.8.1
A FIXED-GAIN IC POWER AMPLIFIER 1261 14.8.2 POWER OPAMPS 1265 14.8.3 THE
BRIDGE AMPLIFIER 1265 14.9 MOS POWER TRANSISTORS 1266 14.9.1 STRUCTUREOF
THE POWER MOSFET 1266 14.9.2 CHARACTERISTICS OF POWER MOSFETS 1268
14.9.3 TEMPERATURE EFFECTS 1269 14.9.4 COMPARISON WITH BJTS 1269 14.9.5
A CLASS AB OUTPUT STAGE UTILIZING MOSFETS 1270 14.10 SPICE SIMULATION
EXAMPLE 1271 SUMMARY 1276 PROBLEMS 1277 APPENDIXES A VLSI FABRICATION
TECHNOLOGY A-1 B TWO-PORT NETWORK PARAMETERS B-1 C SOME USEFUL NETWORK
THEOREMS C-1 D SINGLE-TIME-CONSTANT CIRCUITS D-1 E S-DOMAIN ANALYSIS:
POLES, ZEROS, AND BODE PLOTS E-1 F BIBLIOGRAPHY F-1 G STANDARD
RESISTANCE VALUES AND UNIT PREFIXES G-1 H ANSWERS TO SELECTED PROBLEMS
H-1 INDEX IN-1
|
any_adam_object | 1 |
author | Sedra, Adel S. |
author_facet | Sedra, Adel S. |
author_role | aut |
author_sort | Sedra, Adel S. |
author_variant | a s s as ass |
building | Verbundindex |
bvnumber | BV019357327 |
callnumber-first | T - Technology |
callnumber-label | TK7867 |
callnumber-raw | TK7867 |
callnumber-search | TK7867 |
callnumber-sort | TK 47867 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 4900 |
classification_tum | ELT 430f ELT 340f |
ctrlnum | (OCoLC)53223719 (DE-599)BVBBV019357327 |
dewey-full | 621.381 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381 |
dewey-search | 621.381 |
dewey-sort | 3621.381 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02252nam a2200577zc 4500</leader><controlfield tag="001">BV019357327</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070104 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040806s2004 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003066178</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0195142519</subfield><subfield code="9">0-19-514251-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)53223719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019357327</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7867</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4900</subfield><subfield code="0">(DE-625)157417:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 430f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 340f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sedra, Adel S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microelectronic circuits</subfield><subfield code="c">Adel S. Sedra ; Kenneth C. Smith</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Getr. Zählung</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Oxford series in electrical and computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronische Schaltung</subfield><subfield code="0">(DE-588)4113419-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroelektronik</subfield><subfield code="0">(DE-588)4039207-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mikroelektronik</subfield><subfield code="0">(DE-588)4039207-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektronische Schaltung</subfield><subfield code="0">(DE-588)4113419-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektronische Schaltung</subfield><subfield code="0">(DE-588)4113419-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mikroelektronik</subfield><subfield code="0">(DE-588)4039207-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Kenneth Carless</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012821179&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012821179</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV019357327 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:58:25Z |
institution | BVB |
isbn | 0195142519 |
language | English |
lccn | 2003066178 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012821179 |
oclc_num | 53223719 |
open_access_boolean | |
owner | DE-573 DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-573 DE-91 DE-BY-TUM DE-83 |
physical | Getr. Zählung Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Oxford Univ. Press |
record_format | marc |
series2 | The Oxford series in electrical and computer engineering |
spelling | Sedra, Adel S. Verfasser aut Microelectronic circuits Adel S. Sedra ; Kenneth C. Smith 5. ed. New York Oxford Univ. Press 2004 Getr. Zählung Ill., graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier The Oxford series in electrical and computer engineering Electronic circuits Integrated circuits Elektronische Schaltung (DE-588)4113419-9 gnd rswk-swf Integrierte Schaltung (DE-588)4027242-4 gnd rswk-swf Mikroelektronik (DE-588)4039207-7 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Mikroelektronik (DE-588)4039207-7 s Integrierte Schaltung (DE-588)4027242-4 s Elektronische Schaltung (DE-588)4113419-9 s 2\p DE-604 DE-604 Smith, Kenneth Carless Sonstige oth GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012821179&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sedra, Adel S. Microelectronic circuits Electronic circuits Integrated circuits Elektronische Schaltung (DE-588)4113419-9 gnd Integrierte Schaltung (DE-588)4027242-4 gnd Mikroelektronik (DE-588)4039207-7 gnd |
subject_GND | (DE-588)4113419-9 (DE-588)4027242-4 (DE-588)4039207-7 (DE-588)4151278-9 |
title | Microelectronic circuits |
title_auth | Microelectronic circuits |
title_exact_search | Microelectronic circuits |
title_full | Microelectronic circuits Adel S. Sedra ; Kenneth C. Smith |
title_fullStr | Microelectronic circuits Adel S. Sedra ; Kenneth C. Smith |
title_full_unstemmed | Microelectronic circuits Adel S. Sedra ; Kenneth C. Smith |
title_short | Microelectronic circuits |
title_sort | microelectronic circuits |
topic | Electronic circuits Integrated circuits Elektronische Schaltung (DE-588)4113419-9 gnd Integrierte Schaltung (DE-588)4027242-4 gnd Mikroelektronik (DE-588)4039207-7 gnd |
topic_facet | Electronic circuits Integrated circuits Elektronische Schaltung Integrierte Schaltung Mikroelektronik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012821179&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sedraadels microelectroniccircuits AT smithkennethcarless microelectroniccircuits |