Lectures on the orbit method:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Mathematical Society
2004
|
Schriftenreihe: | Graduate studies in mathematics
64 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 408 S. graph. Darst. |
ISBN: | 9780821835302 0821835300 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV019353083 | ||
003 | DE-604 | ||
005 | 20210113 | ||
007 | t | ||
008 | 040803s2004 xxud||| |||| 00||| eng d | ||
010 | |a 2004047940 | ||
020 | |a 9780821835302 |9 978-0-8218-3530-2 | ||
020 | |a 0821835300 |c alk. paper |9 0-8218-3530-0 | ||
035 | |a (OCoLC)54826181 | ||
035 | |a (DE-599)BVBBV019353083 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-703 |a DE-19 |a DE-824 |a DE-29T |a DE-83 |a DE-11 |a DE-188 |a DE-20 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 515/.7223 |2 22 | |
082 | 0 | |a 515.7223 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a 22E35 |2 msc | ||
100 | 1 | |a Kirillov, Aleksandr A. |d 1936- |e Verfasser |0 (DE-588)124974953 |4 aut | |
245 | 1 | 0 | |a Lectures on the orbit method |c A. A. Kirillov |
264 | 1 | |a Providence, R.I. |b American Mathematical Society |c 2004 | |
300 | |a XX, 408 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate studies in mathematics |v 64 | |
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Orbites, Méthode des | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Orbit method | |
650 | 0 | 7 | |a Orbit |g Mathematik |0 (DE-588)4238277-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orbit |g Mathematik |0 (DE-588)4238277-4 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |C b |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-1799-4 |
830 | 0 | |a Graduate studies in mathematics |v 64 |w (DE-604)BV009739289 |9 64 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012817096&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012817096 |
Datensatz im Suchindex
_version_ | 1804132784108732416 |
---|---|
adam_text | Contents
Preface xv
Introduction xvii
Chapter 1. Geometry of Coadjoint Orbits 1
§1. Basic definitions 1
1.1. Coadjoint representation 1
1.2. Canonical form an 4
§2. Symplectic structure on coadjoint orbits 5
2.1. The first (original) approach 6
2.2. The second (Poisson) approach 7
2.3. The third (symplectic reduction) approach 9
2.4. Integrality condition 11
§3. Coadjoint invariant functions 14
3.1. General properties of invariants 14
3.2. Examples 15
§4. The moment map 16
4.1. The universal property of coadjoint orbits 16
4.2. Some particular cases 19
§5. Polarizations 23
5.1. Elements of symplectic geometry 23
5.2. Invariant polarizations on homogeneous symplectic man¬
ifolds 26
vii
Chapter 2. Representations and Orbits of the Heisenberg Group 31
§1. Heisenberg Lie algebra and Heisenberg Lie group 32
1.1. Some realizations 32
1.2. Universal enveloping algebra f/(h) 35
1.3. The Heisenberg Lie algebra as a contraction 37
§2. Canonical commutation relations 39
2.1. Creation and annihilation operators 39
2.2. Two sided ideals in C/(h) 41
2.3. H. Weyl reformulation of CCR 41
2.4. The standard realization of CCR 43
2.5. Other realizations of CCR 45
2.6. Uniqueness theorem 49
§3. Representation theory for the Heisenberg group 57
3.1. The unitary dual H 57
3.2. The generalized characters of H 59
3.3. The infinitesimal characters of H 60
3.4. The tensor product of unirreps 60
§4. Coadjoint orbits of the Heisenberg group 61
4.1. Description of coadjoint orbits 61
4.2. Symplectic forms on orbits and the Poisson structure
on I)* 62
4.3. Projections of coadjoint orbits 63
§5. Orbits and representations 63
5.1. Restriction induction principle and construction of
unirreps 64
5.2. Other rules of the User s Guide 68
§6. Polarizations 68
6.1. Real polarizations 68
6.2. Complex polarizations 69
6.3. Discrete polarizations 69
Chapter 3. The Orbit Method for Nilpotent Lie Groups 71
§1. Generalities on nilpotent Lie groups 71
§2. Comments on the User s Guide 73
2.1. The unitary dual 73
2.2. The construction of unirreps 73
2.3. Restriction induction functors 74
2.4. Generalized characters 74
2.5. Infinitesimal characters 75
2.6. Functional dimension 75
2.7. Plancherel measure 76
§3. Worked out examples 77
3.1. The unitary dual 78
3.2. Construction of unirreps 80
3.3. Restriction functor 84
3.4. Induction functor 86
3.5. Decomposition of a tensor product of two unirreps 88
3.6. Generalized characters 89
3.7. Infinitesimal characters 91
3.8. Functional dimension 91
3.9. Plancherel measure 92
3.10. Other examples 93
§4. Proofs 95
4.1. Nilpotent groups with 1 dimensional center 95
4.2. The main induction procedure 98
4.3. The image of U(q) and the functional dimension 103
4.4. The existence of generalized characters 104
4.5. Homeomorphism of G and O(G) 106
Chapter 4. Solvable Lie Groups 109
§1. Exponential Lie groups 109
1.1. Generalities 109
1.2. Pukanszky condition 111
1.3. Restriction induction functors 113
1.4. Generalized characters 113
1.5. Infinitesimal characters 117
§2. General solvable Lie groups 118
2.1. Tame and wild Lie groups 118
2.2. Tame solvable Lie groups 123
§3. Example: The diamond Lie algebra g 126
3.1. The coadjoint orbits for g 126
3.2. Representations corresponding to generic orbits 128
3.3. Representations corresponding to cylindrical orbits 131
§4. Amendments to other rules 132
4.1. Rules 3 5 132
4.2. Rules 6, 7, and 10 134
Chapter 5. Compact Lie Groups 135
§1. Structure of semisimple compact Lie groups 136
1.1. Compact and complex semisimple groups 137
1.2. Classical and exceptional groups 144
§2. Coadjoint orbits for compact Lie groups 147
2.1. Geometry of coadjoint orbits 147
2.2. Topology of coadjoint orbits 155
§3. Orbits and representations 161
3.1. Overlook 161
3.2. Weights of a unirrep 164
3.3. Functors Ind and Res 168
3.4. Borel Weil Bott theorem 170
3.5. The integral formula for characters 173
3.6. Infinitesimal characters 174
§4. Intertwining operators 176
Chapter 6. Miscellaneous 179
§1. Semisimple groups 179
1.1. Complex semisimple groups 179
1.2. Real semisimple groups 180
§2. Lie groups of general type 180
2.1. Poincare group 181
2.2. Odd symplectic groups 182
§3. Beyond Lie groups 184
3.1. Infinite dimensional groups 184
3.2. p adic and adelic groups 188
3.3. Finite groups 189
3.4. Supergroups 194
§4. Why the orbit method works 194
4.1. Mathematical argument 194
4.2. Physical argument 196
§5. Byproducts and relations to other domains 198
5.1. Moment map 198
5.2. Integrable systems 199
§6. Some open problems and subjects for meditation 201
6.1. Functional dimension 201
6.2. Infinitesimal characters 203
6.3. Multiplicities and geometry 203
6.4. Complementary series 204
6.5. Finite groups 205
6.6. Infinite dimensional groups 205
Appendix I. Abstract Nonsense 207
§1. Topology 207
1.1. Topological spaces 207
1.2. Metric spaces and metrizable topological spaces 208
§2. Language of categories 211
2.1. Introduction to categories 211
2.2. The use of categories 214
2.3. Application: Homotopy groups 215
§3. Cohomology 216
3.1. Generalities 216
3.2. Group cohomology 217
3.3. Lie algebra cohomology 219
3.4. Cohomology of smooth manifolds 220
Appendix II. Smooth Manifolds 227
§1. Around the definition 227
1.1. Smooth manifolds. Geometric approach 227
1.2. Abstract smooth manifolds. Analytic approach 230
1.3. Complex manifolds 235
1.4. Algebraic approach 236
§2. Geometry of manifolds 238
2.1. Fiber bundles 238
2.2. Geometric objects on manifolds 243
2.3. Natural operations on geometric objects 247
2.4. Integration on manifolds 253
§3. Symplectic and Poisson manifolds 256
3.1. Symplectic manifolds 256
3.2. Poisson manifolds 263
3.3. Mathematical model of classical mechanics 264
3.4. Symplectic reduction 265
Appendix III. Lie Groups and Homogeneous Manifolds 269
§1. Lie groups and Lie algebras 269
1.1. Lie groups 269
1.2. Lie algebras 270
1.3. Five definitions of the functor Lie: G ~» g 274
1.4. Universal enveloping algebras 286
§2. Review of the set of Lie algebras 288
2.1. Sources of Lie algebras 288
2.2. The variety of structure constants 291
2.3. Types of Lie algebras 297
§3. Semisimple Lie algebras 298
3.1. Abstract root systems 298
3.2. Lie algebra «l(2, C) 308
3.3. Root system related to (g, f)) 310
3.4. Real forms 315
§4. Homogeneous manifolds 318
4.1. G sets 318
4.2. G manifolds 323
4.3. Geometric objects on homogeneous manifolds 325
Appendix IV. Elements of Functional Analysis 333
§1. Infinite dimensional vector spaces 333
1.1. Banach spaces 333
1.2. Operators in Banach spaces 335
1.3. Vector integrals 336
1.4. Hilbert spaces 337
§2. Operators in Hilbert spaces 339
2.1. Types of bounded operators 340
2.2. Hilbert Schmidt and trace class operators 340
2.3. Unbounded operators 343
2.4. Spectral theory of self adjoint operators 345
2.5. Decompositions of Hilbert spaces 350
2.6. Application to representation theory 353
§3. Mathematical model of quantum mechanics 355
Appendix V. Representation Theory 357
§1. Infinite dimensional representations of Lie groups 357
1.1. Generalities on unitary representations 357
1.2. Unitary representations of Lie groups 363
1.3. Infinitesimal characters 368
1.4. Generalized and distributional characters 369
1.5. Non commutative Fourier transform 370
§2. Induced representations 371
2.1. Induced representations of finite groups 371
2.2. Induced representations of Lie groups 379
2.3. ^representations of smooth G manifolds 384
2.4. Mackey Inducibility Criterion 389
References 395
Index 403
|
any_adam_object | 1 |
author | Kirillov, Aleksandr A. 1936- |
author_GND | (DE-588)124974953 |
author_facet | Kirillov, Aleksandr A. 1936- |
author_role | aut |
author_sort | Kirillov, Aleksandr A. 1936- |
author_variant | a a k aa aak |
building | Verbundindex |
bvnumber | BV019353083 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
ctrlnum | (OCoLC)54826181 (DE-599)BVBBV019353083 |
dewey-full | 515/.7223 515.7223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7223 515.7223 |
dewey-search | 515/.7223 515.7223 |
dewey-sort | 3515 47223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01904nam a2200505zcb4500</leader><controlfield tag="001">BV019353083</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040803s2004 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004047940</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821835302</subfield><subfield code="9">978-0-8218-3530-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821835300</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8218-3530-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54826181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019353083</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7223</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7223</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22E35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirillov, Aleksandr A.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124974953</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the orbit method</subfield><subfield code="c">A. A. Kirillov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 408 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">64</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbites, Méthode des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbit method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orbit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4238277-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orbit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4238277-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-1799-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">64</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">64</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012817096&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012817096</subfield></datafield></record></collection> |
id | DE-604.BV019353083 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:58:19Z |
institution | BVB |
isbn | 9780821835302 0821835300 |
language | English |
lccn | 2004047940 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012817096 |
oclc_num | 54826181 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM DE-824 DE-29T DE-83 DE-11 DE-188 DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM DE-824 DE-29T DE-83 DE-11 DE-188 DE-20 |
physical | XX, 408 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | American Mathematical Society |
record_format | marc |
series | Graduate studies in mathematics |
series2 | Graduate studies in mathematics |
spelling | Kirillov, Aleksandr A. 1936- Verfasser (DE-588)124974953 aut Lectures on the orbit method A. A. Kirillov Providence, R.I. American Mathematical Society 2004 XX, 408 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate studies in mathematics 64 Lie, Groupes de Orbites, Méthode des Lie groups Orbit method Orbit Mathematik (DE-588)4238277-4 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Orbit Mathematik (DE-588)4238277-4 s Lie-Gruppe (DE-588)4035695-4 s b DE-604 Erscheint auch als Online-Ausgabe 978-1-4704-1799-4 Graduate studies in mathematics 64 (DE-604)BV009739289 64 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012817096&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kirillov, Aleksandr A. 1936- Lectures on the orbit method Graduate studies in mathematics Lie, Groupes de Orbites, Méthode des Lie groups Orbit method Orbit Mathematik (DE-588)4238277-4 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4238277-4 (DE-588)4035695-4 |
title | Lectures on the orbit method |
title_auth | Lectures on the orbit method |
title_exact_search | Lectures on the orbit method |
title_full | Lectures on the orbit method A. A. Kirillov |
title_fullStr | Lectures on the orbit method A. A. Kirillov |
title_full_unstemmed | Lectures on the orbit method A. A. Kirillov |
title_short | Lectures on the orbit method |
title_sort | lectures on the orbit method |
topic | Lie, Groupes de Orbites, Méthode des Lie groups Orbit method Orbit Mathematik (DE-588)4238277-4 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Lie, Groupes de Orbites, Méthode des Lie groups Orbit method Orbit Mathematik Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012817096&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV009739289 |
work_keys_str_mv | AT kirillovaleksandra lecturesontheorbitmethod |