Relativity: an introduction to special and general relativity
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2004
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Früher u.d.T.: Stephani, Hans: General relativity |
Beschreibung: | XX, 396 S. Ill., graph. Darst. |
ISBN: | 0521811856 0521010691 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019351307 | ||
003 | DE-604 | ||
005 | 20060220 | ||
007 | t | ||
008 | 040730s2004 ad|| |||| 00||| eng d | ||
020 | |a 0521811856 |9 0-521-81185-6 | ||
020 | |a 0521010691 |9 0-521-01069-1 | ||
035 | |a (OCoLC)265435301 | ||
035 | |a (DE-599)BVBBV019351307 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-91G |a DE-20 |a DE-634 | ||
050 | 0 | |a QC17 | |
084 | |a UH 8300 |0 (DE-625)145781: |2 rvk | ||
084 | |a PHY 040f |2 stub | ||
100 | 1 | |a Stephani, Hans |d 1935-2003 |e Verfasser |0 (DE-588)1025772032 |4 aut | |
240 | 1 | 0 | |a Allgemeine Relativitätstheorie |
245 | 1 | 0 | |a Relativity |b an introduction to special and general relativity |c Hans Stephani |
250 | |a 3. ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2004 | |
300 | |a XX, 396 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Früher u.d.T.: Stephani, Hans: General relativity | ||
650 | 7 | |a Relatività |2 sbt | |
650 | 4 | |a General relativity (Physics) | |
650 | 4 | |a Gravitational fields | |
650 | 0 | 7 | |a Gravitationstheorie |0 (DE-588)4158117-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Gravitationstheorie |0 (DE-588)4158117-9 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012815379&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012815379 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804132781109805056 |
---|---|
adam_text | RELATIVITY AN INTRODUCTION TO SPECIAL AND GENERAL RELATIVITY THIRD
EDITION HANS STEPHANI CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE PAGE
XV NOTATION XIX PART I SPECIAL RELATIVITY 1 1 INTRODUCTION: INERTIAL
SYSTEMS AND THE GALILEI INVARIANCE OF CLASSICAL MECHANICS 1 1.1 INERTIAL
SYSTEMS 1 1.2 INVARIANCE UNDER TRANSLATIONS 2 1.3 INVARIANCE UNDER
ROTATIONS 3 1.4 INVARIANCE UNDER GALILEI TRANSFORMATIONS 4 1.5 SOME
REMARKS ON THE HOMOGENEITY OF TIME 5 EXERCISES 6 2 LIGHT PROPAGATION IN
MOVING COORDINATE SYSTEMS AND LORENTZ TRANSFORMATIONS 7 2.1 THE
MICHELSON EXPERIMENT 7 2.2 THE LORENTZ TRANSFORMATIONS 8 2.3 SOME
PROPERTIES OF LORENTZ TRANSFORMATIONS 10 EXERCISES 14 3 OUR WORLD AS A
MINKOWSKI SPACE 14 3.1 THE CONCEPT OF MINKOWSKI SPACE 15 3.2
FOUR-VECTORS AND LIGHT CONES 15 3.3 MEASURING LENGTH AND TIME IN
MINKOWSKI SPACE 17 3.4 TWO THOUGHT EXPERIMENTS 20 3.4.1 A ROD MOVING
THROUGH A TUBE 20 3.4.2 THE TWIN PARADOX 20 3.5 CAUSALITY, AND
VELOCITIES LARGER THAN THAT OF LIGHT 21 EXERCISES 24 CONTEJITS MECHANICS
OF SPECIAL RELATIVITY 4.1 KINEMATICS 4.2 EQUATIONS OF MOTION 4.3
HYPERBOLIC MOTION 4.4 SYSTEMS OF PARTICLES EXERCISES OPTICS OF PLANE
WAVES 5.1 INVARIANCE OF PHASE AND NULL VECTORS 5.2 THE DOPPLER EFFECT -
SHIFT IN THE FREQUENCY OF A WAVE 5.3 ABERRATION * CHANGE IN THE
DIRECTION OF A LIGHT RAY 5.4 THE VISUAL SHAPE OF MOVING BODIES 5.5
REFLECTION AT A MOVING MIRROR 5.6 DRAGGING OF LIGHT WITHIN A FLUID
EXERCISES FOUR-DIMENSIONAL VECTORS AND TENSORS 6.1 SOME DEFINITIONS 6.2
TENSOR ALGEBRA 6.3 SYMMETRIES OF TENSORS 6.4 ALGEBRAIC PROPERTIES OF
SECOND RANK TENSORS 6.5 TENSOR ANALYSIS EXERCISES ELECTRODYNAMICS IN
VACUO 7.1 THE MAXWELL EQUATIONS IN THREE-DIMENSIONAL NOTATION 7.2
CURRENT FOUR-VECTOR AND FOUR-POTENTIAL AND THE RETARDED POTENTIALS 7.3
FIELD TENSOR AND THE MAXWELL EQUATIONS 7.4 POYNTING S THEOREM, LORENTZ
FORCE, AND THE ENERGY- MOMENTUM TENSOR 7.5 THE VARIATIONAL PRINCIPLE FOR
THE MAXWELL EQUATIONS EXERCISES TRANSFORMATION PROPERTIES OF
ELECTROMAGNETIC FIELDS: EXAMPLES 8.1 CURRENT AND FOUR-POTENTIAL 8.2
FIELD TENSOR AND ENERGY-MOMENTUM TENSOR EXERCISES NULL VECTORS AND THE
ALGEBRAIC PROPERTIES OF ELECTROMAGNETIC FIELD TENSORS 9.1 NULL TETRADS
AND LORENTZ TRANSFORMATIONS 9.2 SELF-DUAL BIVECTORS AND THE
ELECTROMAGNETIC FIELD TENSOR CONTENTS VII 9.3 THE ALGEBRAIC
CLASSIFICATION OF ELECTROMAGNETIC FIELDS 66 9.4 THE PHYSICAL
INTERPRETATION OF ELECTROMAGNETIC NULL FIELDS 67 EXERCISES 68 0 CHARGED
POINT PARTICLES AND THEIR FIELD 69 10.1 THE EQUATIONS OF MOTION OF
CHARGED TEST PARTICLES 69 10.2 THE VARIATIONAL PRINCIPLE FOR CHARGED
PARTICLES 70 10.3 CANONICAL EQUATIONS 72 10.4 THE FIELD OF A CHARGED
PARTICLE IN ARBITRARY MOTION 74 10.5 THE EQUATIONS OF MOTION OF CHARGED
PARTICLES - THE SELF-FORCE 77 EXERCISES 79 1 POLE-DIPOLE PARTICLES AND
THEIR FIELD 80 11.1 THE CURRENT DENSITY 80 11.2 THE DIPOLE TERM AND ITS
FIELD 82 11.3 THE FORCE EXERTED ON MOVING DIPOLES 84 EXERCISES 84 2
ELECTRODYNAMICS IN MEDIA 84 12.1 FIELD EQUATIONS AND CONSTITUTIVE
RELATIONS 84 12.2 REMARKS ON THE MATCHING CONDITIONS AT MOVING SUR-
FACES 87 12.3 THE ENERGY-MOMENTUM TENSOR 87 EXERCISES 89 3 PERFECT
FLUIDS AND OTHER PHYSICAL THEORIES 89 13.1 PERFECT FLUIDS 89 13.2 OTHER
PHYSICAL THEORIES - AN OUTLOOK 92 J ART II RIEMANNIAN GEOMETRY 95 .4
INTRODUCTION: THE FORCE-FREE MOTION OF PARTICLES IN NEWTONIAN MECHANICS
95 14.1 COORDINATE SYSTEMS 95 14.2 EQUATIONS OF MOTION 97 14.3 THE
GEODESIC EQUATION 98 14.4 GEODESIC DEVIATION 100 EXERCISES 103 .5 WHY
RIEMANNIAN GEOMETRY? 103 .6 RIEMANNIAN SPACE 105 16.1 THE METRIC 105
16.2 GEODESIES AND CHRISTOFFEL SYMBOLS 106 16.3 COORDINATE
TRANSFORMATIONS 109 VIII CONTENTS 16.4 SPECIAL COORDINATE SYSTEMS 16.5
THE PHYSICAL MEANING AND INTERPRETATION OF COORDINATE SYSTEMS EXERCISES
17 TENSOR ALGEBRA 17.1 SCALARS AND VECTORS 17.2 TENSORS AND OTHER
GEOMETRICAL OBJECTS 17.3 ALGEBRAIC OPERATIONS WITH TENSORS 17.4 TETRFTD
AND SPINOR COMPONENTS OF TENSORS EXERCISES 18 THE COVARIANT DERIVATIVE
AND PARALLEL TRANSPORT 18.1 PARTIAL AND COVARIANT DERIVATIVES 18.2 THE
COVARIANT DIFFERENTIAL AND LOCAL PARALLELISM 18.3 PARALLEL DISPLACEMENT
ALONG A CURVE AND THE PARALLEL PROPAGATOR 18.4 FERMI-WALKER TRANSPORT
18.5 THE LIE DERIVATIVE EXERCISES 19 THE CURVATURE TENSOR 19.1 INTRINSIC
GEOMETRY AND CURVATURE 19.2 THE CURVATURE TENSOR AND GLOBAL PARALLELISM
OF VECTORS 19.3 THE CURVATURE TENSOR AND SECOND DERIVATIVES OF THE
METRIC TENSOR 19.4 PROPERTIES OF THE CURVATURE TENSOR 19.5 SPACES OF
CONSTANT CURVATURE EXERCISES 20 DIFFERENTIAL OPERATORS, INTEGRALS AND
INTEGRAL LAWS 20.1 THE PROBLEM 20.2 SOME IMPORTANT DIFFERENTIAL
OPERATORS 20.3 VOLUME, SURFACE AND LINE INTEGRALS 20.4 INTEGRAL LAWS
20.5 INTEGRAL CONSERVATION LAWS 21 FUNDAMENTAL LAWS OF PHYSICS IN
RIEMANNIAN SPACES 21.1 HOW DOES ONE FIND THE FUNDAMENTAL PHYSICAL LAWS?
21.2 PARTICLE MECHANICS 21.3 ELECTRODYNAMICS IN VACUO 21.4 GEOMETRICAL
OPTICS 21.5 THERMODYNAMICS 21.6 PERFECT FLUIDS AND DUST 21.7 OTHER
FUNDAMENTAL PHYSICAL LAWS EXERCISES CONTENTS IX PART III FOUNDATIONS OF
EINSTEIN S THEORY OF GRAVITATION 173 12 THE FUNDAMENTAL EQUATIONS OF
EINSTEIN S THEORY OF GRAVITATION 173 22.1 THE EINSTEIN FIELD EQUATIONS
173 22.2 THE NEWTONIAN LIMIT 176 22.3 THE EQUATIONS OF MOTION OF TEST
PARTICLES 178 22.4 A VARIATIONAL PRINCIPLE FOR EINSTEIN S THEORY 182 13
THE SCHWARZSCHILD SOLUTION 185 23.1 THE FIELD EQUATIONS 185 23.2 THE
SOLUTION OF THE VACUUM FIELD EQUATIONS 188 23.3 GENERAL DISCUSSION OF
THE SCHWARZSCHILD SOLUTION 189 23.4 THE MOTION OF THE PLANETS AND
PERIHELION PRECESSION 191 23.5 THE PROPAGATION OF LIGHT IN THE
SCHWARZSCHILD FIELD 194 23.6 FURTHER ASPECTS OF THE SCHWARZSCHILD
SOLUTION 198 23.7 THE REISSNER-NORDSTROM SOLUTION 199 EXERCISES 200 14
EXPERIMENTS TO VERIFY THE SCHWARZSCHILD METRIC 200 24.1 SOME GENERAL
REMARKS 200 24.2 PERIHELION PRECESSION AND PLANETARY ORBITS 201 24.3
LIGHT DEFLECTION BY THE SUN 202 24.4 RCDSHIFTS 203 24.5 MEASUREMENTS OF
THE TRAVEL TIME OF RADAR SIGNALS (TIME DELAY) 203 24.6 GEODESIC
PRECESSION OF A TOP 204 25 GRAVITATIONAL LENSES 205 25.1 THE SPHERICALLY
SYMMETRIC GRAVITATIONAL LENS 205 25.2 GALAXIES AS GRAVITATIONAL LENSES
207 EXERCISE 208 26 THE INTERIOR SCHWARZSCHILD SOLUTION 209 26.1 THE
FIELD EQUATIONS 209 26.2 THE SOLUTION OF THE FIELD EQUATIONS 210 26.3
MATCHING CONDITIONS AND CONNECTION TO THE EXTERIOR SCHWARZCHILD SOLUTION
212 26.4 A DISCUSSION OF THE INTERIOR SCHWARZSCHILD SOLUTION 214
EXERCISES 215 PART IV LINEARIZED THEORY OF GRAVITATION, FAR FIELDS AND
GRAVITATIONAL WAVES 217 27 THE LINEARIZED EINSTEIN THEORY OF GRAVITY 217
X CONTENTS 27.1 JUSTIFICATION FOR A LINEARIZED THEORY AND ITS REALM OF
VALIDITY 27.2 THE FUNDAMENTAL EQUATIONS OF THE LINEARIZED THEORY 27.3 A
DISCUSSION OF THE FUNDAMENTAL EQUATIONS AND A COM- PARISON WITH
SPECIAL-RELATIVISTIC ELECTRODYNAMICS 27.4 THE FAR FIELD DUE TO A
TIME-DEPENDENT SOURCE 27.5 DISCUSSION OF THE PROPERTIES OF THE FAR FIELD
(LINEARIZED THEORY) 27.6 SOME REMARKS ON APPROXIMATION SCHEMES EXERCISE
28 FAR FIELDS DUE TO ARBITRARY MATTER DISTRIBUTIONS AND BALANCE
EQUATIONS FOR MOMENTUM AND ANGULAR MOMENTUM 28.1 WHAT ARE FAR FIELDS?
28.2 THE ENERGY-MOMENTUM PSEUDOTENSOR FOR THE GRAVITA- TIONAL FIELD 28.3
THE BALANCE EQUATIONS FOR MOMENTUM AND ANGULAR MOMENTUM 28.4 IS THERE AN
ENERGY LAW FOR THE GRAVITATIONAL FIELD? 29 GRAVITATIONAL WAVES 29.1 ARE
THERE GRAVITATIONAL WAVES? 29.2 PLANE GRAVITATIONAL WAVES IN THE
LINEARIZED THEORY 29.3 PLANE WAVES AS EXACT SOLUTIONS OF EINSTEIN S
EQUATIONS 29.4 THE EXPERIMENTAL EVIDENCE FOR GRAVITATIONAL WAVES
EXERCISES 30 THE CAUCHY PROBLEM FOR THE EINSTEIN FIELD EQUATIONS 30.1
THE PROBLEM 30.2 THREE-DIMENSIONAL HYPERSURFACES AND REDUCTION FORMULAE
FOR THE CURVATURE TENSOR 30.3 THE CAUCHY PROBLEM FOR THE VACUUM FIELD
EQUATIONS 30.4 THE CHARACTERISTIC INITIAL VALUE PROBLEM 30.5 MATCHING
CONDITIONS AT THE BOUNDARY SURFACE OF TWO METRICS PART V INVARIANT
CHARACTERIZATION OF EXACT SOLUTIONS 31 PREFERRED VECTOR FIELDS AND THEIR
PROPERTIES 31.1 SPECIAL SIMPLE VECTOR FIELDS 31.2 TIMELIKE VECTOR FIELDS
31.3 NULL VECTOR FIELDS EXERCISES CONTENTS XI 32 THE PETROV
CLASSIFICATION 272 32.1 WHAT IS THE PETROV CLASSIFICATION? 272 32.2 THE
ALGEBRAIC CLASSIFICATION OF GRAVITATIONAL FIELDS 273 32.3 THE PHYSICAL
INTERPRETATION OF DEGENERATE VACUUM GRAVITATIONAL FIELDS 276 EXERCISES
278 33 KILLING VECTORS AND GROUPS OF MOTION 278 33.1 THE PROBLEM 278
33.2 KILLING VECTORS 278 33.3 KILLING VECTORS OF SOME SIMPLE SPACES 280
33.4 RELATIONS BETWEEN THE CURVATURE TENSOR AND KILLING VECTORS 281 33.5
GROUPS OF MOTION 283 33.6 KILLING VECTORS AND CONSERVATION LAWS 288
EXERCISES 292 34 A SURVEY OF SOME SELECTED CLASSES OF EXACT SOLUTIONS
293 34.1 DEGENERATE VACUUM SOLUTIONS 293 34.2 VACUUM SOLUTIONS WITH
SPECIAL SYMMETRY PROPERTIES 295 34.3 PERFECT FLUID SOLUTIONS WITH
SPECIAL SYMMETRY PROPERTIES 298 EXERCISES 299 PART VI GRAVITATIONAL
COLLAPSE AND BLACK HOLES 301 35 THE SCHWARZSCHILD SINGULARITY 301 35.1
HOW DOES ONE EXAMINE THE SINGULAR POINTS OF A METRIC? 301 35.2 RADIAL
GEODESIES NEAR R = 2M 303 35.3 THE SCHWARZSCHILD SOLUTION IN OTHER
COORDINATE SYSTEMS 304 35.4 THE SCHWARZSCHILD SOLUTION AS A BLACK HOLE
307 EXERCISES 310 36 GRAVITATIONAL COLLAPSE - THE POSSIBLE LIFE HISTORY
OF A SPHERICALLY SYMMETRIC STAR 310 36.1 THE EVOLUTIONARY PHASES OF A
SPHERICALLY SYMMETRIC STAR 310 36.2 THE CRITICAL MASS OF A STAR 311 36.3
GRAVITATIONAL COLLAPSE OF SPHERICALLY SYMMETRIC DUST 315 37 ROTATING
BLACK HOLES 322 37.1 THE KERR SOLUTION 322 37.2 GRAVITATIONAL COLLAPSE
THE POSSIBLE LIFE HISTORY OF A ROTATING STAR 325 XII CONTENTS 37.3 SOME
PROPERTIES OF BLACK HOLES 37.4 ARE THERE BLACK HOLES? 38 BLACK HOLES ARE
NOT BLACK - RELATIVITY THEORY AND QUANTUM THEORY 38.1 THE PROBLEM 38.2
UNIFIED QUANTUM FIELD THEORY AND QUANTIZATION OF THE GRAVITATIONAL FIELD
38.3 SEMICLASSICAL GRAVITY 38.4 QUANTIZATION IN A GIVEN CLASSICAL
GRAVITATIONAL FIELD 38.5 BLACK HOLES ARE NOT BLACK - THE THERMODYNAMICS
OF BLACK HOLES 39 THE CONFORMAL STRUCTURE OF INFINITY 39.1 THE PROBLEM
AND METHODS TO ANSWER IT 39.2 INFINITY OF THE THREE-DIMENSIONAL
EUCLIDEAN SPACE (E 3 ) 39.3 THE CONFORMAL STRUCTURE OF MINKOWSKI SPACE
39.4 ASYMPTOTICALLY FLAT GRAVITATIONAL FIELDS 39.5 EXAMPLES OF PENROSE
DIAGRAMS EXERCISES PART VII COSMOLOGY 40 ROBERTSON-WALKER METRICS AND
THEIR PROPERTIES 40.1 THE COSMOLOGICAL PRINCIPLE AND ROBERTSON WALKER
METRICS 40.2 THE MOTION OF PARTICLES AND PHOTONS 40.3 DISTANCE
DEFINITIONS AND HORIZONS 40.4 SOME REMARKS ON PHYSICS IN CLOSED
UNIVERSES EXERCISES 41 THE DYNAMICS OF ROBERTSON WALKER METRICS AND THE
FRIEDMANN UNIVERSES 41.1 THE EINSTEIN FIELD EQUATIONS FOR
ROBERTSON-WALKER METRICS 41.2 THE MOST IMPORTANT FRIEDMANN UNIVERSES
41.3 CONSEQUENCES OF THE FIELD EQUATIONS FOR MODELS WITH ARBITRARY
EQUATION OF STATE HAVING POSITIVE PRESSURE AND POSITIVE REST MASS
DENSITY EXERCISES 42 OUR UNIVERSE AS A FRIEDMANN MODEL 42.1 REDSHIFT AND
MASS DENSITY CONTENTS XII I 42.2 THE EARLIEST EPOCHS OF OUR UNIVERSE AND
THE COSMIC BACKGROUND RADIATION 373 42.3 A SCHWARZSCHILD CAVITY IN THE
FRIEDMANN UNIVERSE 376 43 GENERAL COSMOLOGICAL MODELS 380 43.1 WHAT IS A
COSMOLOGICAL MODEL? 380 43.2 SOLUTIONS OF BIANCHI TYPE / WITH DUST 381
43.3 THE GODEL UNIVERSE 384 43.4 SINGULARITY THEOREMS 385 EXERCISES 387
BIBLIOGRAPHY 388 INDEX 392
|
any_adam_object | 1 |
author | Stephani, Hans 1935-2003 |
author_GND | (DE-588)1025772032 |
author_facet | Stephani, Hans 1935-2003 |
author_role | aut |
author_sort | Stephani, Hans 1935-2003 |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV019351307 |
callnumber-first | Q - Science |
callnumber-label | QC17 |
callnumber-raw | QC17 |
callnumber-search | QC17 |
callnumber-sort | QC 217 |
callnumber-subject | QC - Physics |
classification_rvk | UH 8300 |
classification_tum | PHY 040f |
ctrlnum | (OCoLC)265435301 (DE-599)BVBBV019351307 |
discipline | Physik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200541 c 4500</leader><controlfield tag="001">BV019351307</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040730s2004 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521811856</subfield><subfield code="9">0-521-81185-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521010691</subfield><subfield code="9">0-521-01069-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265435301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019351307</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC17</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8300</subfield><subfield code="0">(DE-625)145781:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 040f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stephani, Hans</subfield><subfield code="d">1935-2003</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025772032</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relativity</subfield><subfield code="b">an introduction to special and general relativity</subfield><subfield code="c">Hans Stephani</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 396 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Früher u.d.T.: Stephani, Hans: General relativity</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relatività</subfield><subfield code="2">sbt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General relativity (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitational fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gravitationstheorie</subfield><subfield code="0">(DE-588)4158117-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gravitationstheorie</subfield><subfield code="0">(DE-588)4158117-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012815379&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012815379</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV019351307 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:58:16Z |
institution | BVB |
isbn | 0521811856 0521010691 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012815379 |
oclc_num | 265435301 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-634 |
owner_facet | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-634 |
physical | XX, 396 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Stephani, Hans 1935-2003 Verfasser (DE-588)1025772032 aut Allgemeine Relativitätstheorie Relativity an introduction to special and general relativity Hans Stephani 3. ed. Cambridge [u.a.] Cambridge Univ. Press 2004 XX, 396 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Früher u.d.T.: Stephani, Hans: General relativity Relatività sbt General relativity (Physics) Gravitational fields Gravitationstheorie (DE-588)4158117-9 gnd rswk-swf Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Relativitätstheorie (DE-588)4049363-5 s DE-604 Allgemeine Relativitätstheorie (DE-588)4112491-1 s Gravitationstheorie (DE-588)4158117-9 s HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012815379&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stephani, Hans 1935-2003 Relativity an introduction to special and general relativity Relatività sbt General relativity (Physics) Gravitational fields Gravitationstheorie (DE-588)4158117-9 gnd Relativitätstheorie (DE-588)4049363-5 gnd Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd |
subject_GND | (DE-588)4158117-9 (DE-588)4049363-5 (DE-588)4112491-1 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Relativity an introduction to special and general relativity |
title_alt | Allgemeine Relativitätstheorie |
title_auth | Relativity an introduction to special and general relativity |
title_exact_search | Relativity an introduction to special and general relativity |
title_full | Relativity an introduction to special and general relativity Hans Stephani |
title_fullStr | Relativity an introduction to special and general relativity Hans Stephani |
title_full_unstemmed | Relativity an introduction to special and general relativity Hans Stephani |
title_short | Relativity |
title_sort | relativity an introduction to special and general relativity |
title_sub | an introduction to special and general relativity |
topic | Relatività sbt General relativity (Physics) Gravitational fields Gravitationstheorie (DE-588)4158117-9 gnd Relativitätstheorie (DE-588)4049363-5 gnd Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd |
topic_facet | Relatività General relativity (Physics) Gravitational fields Gravitationstheorie Relativitätstheorie Allgemeine Relativitätstheorie Einführung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012815379&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stephanihans allgemeinerelativitatstheorie AT stephanihans relativityanintroductiontospecialandgeneralrelativity |