Soil water solute process characterization: an integrated approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXV, 778 S. Ill., graph. Darst. |
ISBN: | 1566706572 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019340103 | ||
003 | DE-604 | ||
005 | 20050830 | ||
007 | t | ||
008 | 040720s2005 ad|| |||| 00||| eng d | ||
020 | |a 1566706572 |9 1-5667-0657-2 | ||
035 | |a (OCoLC)55955285 | ||
035 | |a (DE-599)BVBBV019340103 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-M49 | ||
050 | 0 | |a S594 | |
082 | 0 | |a 631.4/32/011 |2 22 | |
084 | |a RB 10354 |0 (DE-625)142220:12705 |2 rvk | ||
084 | |a BAU 213f |2 stub | ||
084 | |a UMW 331f |2 stub | ||
084 | |a LAN 117f |2 stub | ||
100 | 1 | |a Álvarez-Benedí, Javier |e Verfasser |4 aut | |
245 | 1 | 0 | |a Soil water solute process characterization |b an integrated approach |c ed. by Javier Álvarez-Benedí ... |
246 | 1 | 3 | |a Soil-water-solute process characterization |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2005 | |
300 | |a XXXV, 778 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Eau souterraine - Écoulement - Modèles mathématiques | |
650 | 4 | |a Sols - Humidité - Modèles mathématiques | |
650 | 4 | |a Sols - Perméabilité - Modèles mathématiques | |
650 | 4 | |a Sols - Transfert des solutés - Modèles mathématiques | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Groundwater flow |x Mathematical models | |
650 | 4 | |a Soil moisture |x Mathematical models | |
650 | 4 | |a Soil permeability |x Mathematical models | |
650 | 4 | |a Soils |x Solute movement |x Mathematical models | |
650 | 0 | 7 | |a Bodenwasserstrom |0 (DE-588)4694360-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bodenwasserhaushalt |0 (DE-588)4007421-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bodenwasserhaushalt |0 (DE-588)4007421-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bodenwasserstrom |0 (DE-588)4694360-2 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012804669&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012804669 |
Datensatz im Suchindex
_version_ | 1804132763771600896 |
---|---|
adam_text | Table of Contents
Preface ............................................................... v
Editors................................................................. xi
Contributors........................................................... xiii
Section I
Integration of Soil Process Characterization
Chapter 1 Multidisciplinary Approach for Assessing Subsurface
Non-Point Source Pollution................................ 1
Dennis L. Corwin and Keith Loague
1.1 Introduction...................................................... 2
1.1.1 Definition and Characteristics of NPS Pollution............ 3
1.1.2 The NPS Pollution Problem............................... 4
1.1.2.1 The Issue of Health............................... 4
1.1.2.2 Global Scope and Significance.................... 5
1.1.2.3 Common NPS Pollutants......................... 8
1.1.3 Justification for Assessing NPS Pollution in Soil........... 9
1.2 Multidisciplinary Approach for Assessing Subsurface
NPS Pollutants................................................... 11
1.2.1 Deterministic Modeling Process............................ 13
1.2.1.1 Model Conceptualization......................... 14
1.2.1.2 Model Parameters................................ 15
1.2.1.3 Verification....................................... 16
1.2.1.4 Sensitivity Analysis............................... 16
1.2.1.5 Calibration....................................... 18
1.2.1.6 Validation........................................ 19
1.2.1.7 Simulation and Uncertainty Analysis.............. 21
1.2.2 Spatial Factors to Consider When Modeling NPS
Pollutants in Soil.......................................... 23
1.2.2.1 Scale............................................. 23
1.2.2.2 Spatial Variability and Structure.................. 25
1.2.3 Modeling NPS Pollutants in Soil........................... 30
1.2.3.1 Data............................................. 31
1.2.3.1.1 Measured Data........................ 31
1.2.3.1.2 Estimated Data........................ 32
1.2.3.1.3 Existing Data.......................... 33
1.2.3.2 GIS.............................................. 34
XX
Table of Contents
1.2.3.3 Models........................................... 36
1.2.3.3.1 GIS-Based Deterministic Models....... 37
1.2.3.3.2 GIS-Based Stochastic Models.......... 38
1.2.4 Role of Geostatistics and Fuzzy Set Theory................ 39
1.3 Case Study....................................................... 42
1.3.1 San Joaquin Valley Groundwater Vulnerability Study...... 42
References............................................................. 46
Chapter 2 Spatial and Temporal Variability of Soil Processes:
Implications for Method Selection and
Characterization Studies................................... 59
Chris G. Campbell and Fernando Garrido
2.1 Introduction...................................................... 60
2.1.1 Need for Field Studies..................................... 60
2.1.2 Preliminary Issues......................................... 61
2A.2.1 Determinism in Soil Processes..................... 63
2.1.2.2 Stochasticity in Soil Processes..................... 63
2.2 On Spatial Variability............................................ 64
2.3 On Temporal Variability.......................................... 67
2.4 Issues in Field Study Design...................................... 69
2.4.1 Issues of Scale............................................. 69
2.4.2 Characterizing Scale of Study.............................. 71
2.4.3 Irrigation, Solute Delivery, and Three-Dimensional Flow... 73
2.5 Summary and Conclusions........................................ 75
Acknowledgments..................................................... 79
Appendix: Breakthrough Curve Data Analysis......................... 79
Moment Analysis...................................................... 79
Temporal Analysis..................................................... 80
References............................................................. 80
Chapter 3 Modeling as a Tool for the Characterization of Soil
Water and Chemical Fate and Transport................... 87
Javier Âlvarez-Benedi, Rafael Mufioz-Carpena and
Marnik Vanclooster
3.1 Introduction...................................................... 88
3.2 General Conceptualization of Soil Processes....................... 90
3.2.1 Instantaneous Equilibrium................................. 91
3.2.2 Irreversible Kinetics....................................... 92
3.2.3 Reversible kinetics......................................... 94
3.2.4 Transport................................................. 95
3.3 Soil-Water Transport Processes................................... 96
3.3.1 Classical Description of Water Movement................. 96
3.3.2 Characterization of Water Content-Pressure Head and
Hydraulic Conductivity-Pressure Head Relationships...... 98
Table of Contents xxi
3.3.3 Dual Porosity Models..................................... 100
3.4 Soil-Solute Transport Processes................................... 101
3.4.1 Classical Description of Solute Movement................. 101
3.4.2 Nonequilibrium Models................................... 102
3.4.3 Solute Dispersion.......................................... 104
3.4.4 Sorption................................................... 107
3.4.5 Volatilization and Gas Solubility........................... 109
3.4.6 Transformation............................................ Ill
3.5 Modeling Soil Processes.......................................... 113
3.5.1 Building Soil Processes Models............................ 113
3.5.2 Inverse Characterization of Soil Processes.................. 115
Acknowledgments ..................................................... 115
Notation............................................................... 116
References............................................................. 117
Section II
Soil and Physical Processes: Energy and Water
Chapter 4 Techniques for Characterizing Water and Energy
Balance at the Soil-Plant-Atmosphere Interface............. 123
M. J. Polo, J. V. Girâldez, M. P. Gonzâlez-Dugo and
K. Vanderlinden
4.1 The Components of Water and Energy Balances:
Description and Nature of Processes.............................. 124
4.1.1 Description and Nature of Processes and
Associated Uncertainty.................................... 125
4.1.2 Different Approaches and Spatiotemporal Scales........... 127
4.1.3 Remote Sensing: Potential as a Global Data Source........ 128
4.2 Modeling of the Water and Energy Balance at the
Soil-Plant-Atmosphere Interface and Scale Effects................. 129
4.2.1 The Use of Models for the Description of
Soil-Plant-Atmosphere Exchange Processes................. 129
4.2.1.1 A Simple Water and Energy Balance Model:
The Interaction between Land and
Atmosphere...................................... 129
4.2.1.2 The Force Restore Approach..................... 131
4.2.1.3 Dynamics of Soil Moisture Using a Simple
Water Balance.................................... 132
4.2.1.4 Exploration of Optimal Conditions for
Vegetation through a Water Balance Model....... 133
4.2.1.5 Strengths and Weaknesses........................ 136
4.2.2 Interaction of Model Development and Temporal and
Spatial Scales.............................................. 137
4.2.3 Hydrologie Data Assimilation............................. 138
XXII
Table of Contents
4.3 The Vegetation Components: Measurement Methods.............. 140
4.3.1 Interception............................................... 140
4.3.1.1 Methods of Estimation of Interception............ 141
4.3.1.2 Strengths and Weaknesses........................ 141
4.3.2 Evapotranspiration........................................ 142
4.3.2.1 Conservation of Mass Approach.................. 142
4.3.2.2 Conservation-of-Energy Approach................ 144
4.3.2.3 Plant Physiology.................................. 146
4.3.2.4 ET Modeling..................................... 147
4.3.2.5 Strengths and Weaknesses........................ 147
4.3.3 Recharge and Temporal Soil Water
Content Variations........................................ 148
4.4 The Remote Sensing Perspective.................................. 150
4.4.1 Relations between Spectral Measurements and
Biophysical Properties..................................... 151
4.4.1.1 VIS-NIR......................................... 151
4.4.1.2 Thermal Infrared................................. 152
4.4.1.3 Microwave....................................... 153
4.4.1.4 Strengths and Weaknesses........................ 154
4.5 Recommendations and Future Research.......................... 155
Notation............................................................... 155
References............................................................. 158
Chapter 5 Field Methods for Monitoring Soil Water
Status...................................................... 167
Rafael Munoz-Carpena, Axel Ritter and David Bosch
5.1 Introduction...................................................... 168
5.2 Methods of Characterization: Trade-offs: Comparative Study..... 170
5.2.1 Volumetric Field Methods................................. 170
5.2.1.1 Neutron Moderation.............................. 170
5.2.1.2 Dielectric Methods............................... 172
5.2.1.2.1 Time Domain Reflectometry
(TDR)................................. 173
5.2.1.2.2 Frequency Domain (FD): Capacitance
and FDR.............................. 175
5.2.1.2.3 Amplitude Domain Reflectometry
(ADR): Impedance..................... 176
5.2.1.2.4 Phase Transmission (Virrib)............ 178
5.2.1.2.5 Time Domain Transmission (TDT)..... 179
5.2.1.3 Other Volumetric Field Methods.................. 179
5.2.2 Tensiometric Field Methods............................... 181
5.2.2.1 Tensiometer...................................... 181
5.2.2.2 Resistance Blocks................................. 182
5.2.2.2.1 Gypsum (Bouyoucos) Block............ 183
Table of Contents xxiii
5.2.2.2.2 Granular Matrix Sensors (GMS)....... 184
5.2.2.3 Heat Dissipation.................................. 185
5.2.2.4 Soil Psychrometer................................ 186
5.3 Recommendations and Future Research.......................... 188
Acknowledgment...................................................... 193
References............................................................. 193
Chapter 6 Measurement and Characterization of Soil
Hydraulic Properties....................................... 197
W. D. Reynolds and D. E. Elrick
6.1 Introduction...................................................... 198
6.2 Principles of Soil Water Flow and Parameter Definitions.......... 199
6.3 Field Methods for In Situ Measurement of
Soil Hydraulic Properties......................................... 203
6.3.1 Ring Infiltrometers........................................ 204
6.3.1.1 Ring Infiltration Theory.......................... 204
6.3.1.1.1 Steady-State Infiltration................ 204
6.3.1.1.2 Transient Infiltration................... 206
6.3.1.2 Single-Ring and Double-Ring
Infiltrometer Methods............................ 207
6.3.1.2.1 Traditional Steady Flow Analyses...... 207
6.3.1.2.2 Updated Steady Flow Analyses......... 208
6.3.1.2.3 Traditional Transient Flow
Analysis............................... 210
6.3.1.2.4 Updated Transient Flow Analyses...... 212
6.3.1.3 Twin-Ring and Multiple-Ring Infiltrometer
Methods.......................................... 213
6.3.1.4 Generalized Steady Flow Analysis for
Ring Infiltrometers............................... 215
6.3.1.5 Calculation of Matric Flux Potential,
Sorptivity, and Wetting Front Pressure Head...... 216
6.3.1.6 Strengths and Weaknesses of Ring
Infiltrometer Methods............................ 216
6.3.2 Well or Borehole Permeameters............................ 217
6.3.2.1 Well Permeameter Flow Theory................... 220
6.3.2.2 Original Well Permeameter Analysis.............. 221
6.3.2.3 Updated Well Permeameter Analyses............. 222
6.3.2.3.1 Improved Steady Flow Analyses........ 222
6.3.2.3.2 Transient Flow Analyses............... 224
6.3.2.4 Strengths and Weaknesses of Well
Permeameter Methods............................ 226
6.3.3 Tension or Disc Infiltrometers............................. 227
6.3.3.1 Tension Infiltrometer Flow Theory................ 228
6.3.3.2 Steady Flow — Multiple Head Tension
Infiltrometer Analyses............................ 232
xxjv Table of Contents
6.3.3.3 Transient Flow — Single Head Tension
Infiltrometer Analysis............................. 236
6.3.3.4 Accounting for Contact Sand..................... 238
6.3.3.5 Strengths and Weaknesses of the Tension
Infiltrometer Method............................. 240
6.3.4 Other Methods............................................ 242
6.3.4.1 Instantaneous Profile Method..................... 242
6.3.4.2 Strengths and Weaknesses of the Instantaneous
Profile Method................................... 245
6.4 Recommendations for Further Research.......................... 246
6.5 Concluding Remarks............................................. 247
References............................................................. 247
Chapter 7 Unraveling Microscale Flow and Pore Geometry:
NMRI and X-Ray Tomography............................ 253
Markus Deurer and Brent E. Clothier
7.1 Introduction...................................................... 254
7.2 Nuclear Magnetic Resonance Imaging............................ 255
7.2.1 Measurement Principle: The Behavior of Spins in
Magnetic Fields........................................... 255
7.2.2 Fourier Imaging........................................... 259
7.2.2.1 Pulse Sequence Design............................ 259
7.2.2.2 Key Hardware Components...................... 266
7.2.2.2.1 NMR Magnet.......................... 266
7.2.2.2.2 NMR Probe........................... 267
7.2.2.2.3 Magnetic Field Gradient Coils......... 267
7.2.2.2.4 NMR Imaging Spectrometer........... 268
7.2.3 Applications of NMRI to Soil-Plant-Water Processes...... 268
7.2.4 Strengths and Weaknesses of NMR Imaging............... 271
7.2.4.1 Strengths......................................... 271
7.2.4.2 Weaknesses....................................... 271
7.3 X-Ray Computed Tomography................................... 272
7.3.1 Measurement Principle: Attenuation of X-Ray
Photon Energy............................................ 272
7.3.2 Measurement Components................................. 273
7.3.3 Analysis of Measured Attenuation......................... 274
7.3.3.1 Interpretation of Attenuation Coefficients......... 274
7.3.3.1.1 Homogeneous Object and
Monochromatic X-Rays................ 274
7.3.3.1.2 Heterogeneous Object and
Monochromatic X-Rays................ 276
7.3.1.1.3 Heterogeneous Object and
Polychromatic X-Rays................. 276
7.3.3.2 Image Reconstruction............................. 278
Table of Contents xxv
7.3.4 Applications of X-Ray Tomography to
Soil-Plant-Water Processes................................. 279
7.3.5 Strengths and Weaknesses of X-Ray Tomography.......... 281
7.3.5.1 Strengths......................................... 281
7.3.5.2 Weaknesses....................................... 282
7.4 Use of NMRI and X-Ray Tomography for Practical
Engineering Purposes............................................. 282
7.5 Prospects and Future Research Imperatives....................... 283
7.5.1 Microscale................................................ 283
7.5.2 Macroscale................................................ 283
References............................................................. 284
Chapter 8 Preferential Flow: Identification and Quantification........ 289
Adel Shirmohammadi, H. Montas, Lars Bergström, Ali Sadeghi
and David Bosch
8.1 Introduction...................................................... 290
8.2 Background on Preferential Flow Processes and Identification..... 291
8.3 Quantification of Preferential Flow............................... 293
8.3.1 Experimental.............................................. 293
8.3.2 Theoretical................................................ 295
8.3.2.1 Mechanistic, Single-Domain, Derived
Stochastically (Averaging) with Deterministic
Result............................................ 296
8.3.2.2 Empirical Single-Domain, Deterministic........... 297
8.3.2.3 Mechanistic, Bidomain and Multidomain,
Deterministic..................................... 298
8.3.2.4 Mechanistic, Single-Domain, Stochastic........... 300
8.3.2.5 A New Three-Domain Infiltration Concept
for Structured Soils............................... 300
8.4 Summary and Conclusions........................................ 303
References............................................................. 304
Section III
Soil and Solutes Processes
Chapter 9 Field Methods for Monitoring Solute Transport............ 309
Markus Tuller and Mohammed R. Islam
9.1 Introduction...................................................... 310
9.2 Direct Extraction of Soil Solution................................. 310
9.2.1 Field Methods for In Situ Extraction of Soil Solution..... 310
9.2.1.1 Suction Cups.................................... 310
xxvi Table of Contents
9.2.1.2 Combined Solution Sampling — Tensiometer
Probes.......................................... 314
9.2.1.3 Suction Lysimeters.............................. 316
9.2.1.4 Passive Capillary Samplers....................... 317
9.2.1.5 Capillary Absorbers............................. 319
9.2.2 Solution Extraction from Soil Samples.................... 321
9.3 Indirect Field Methods for Determining Solute Concentration..... 321
9.3.1 Time Domain Reflectometry.............................. 321
9.3.2 Electrical Resistivity Methods............................ 326
9.3.3 Electromagnetic Induction................................ 329
9.3.4 Porous Matrix Sensors................................... 332
9.3.5 Fiber Optic Sensors...................................... 335
9.4 Comparison of Direct and Indirect Methods...................... 336
9.5 Case Studies and Recommendations for Future Research......... 337
9.5.1 Detailed Characterization of Solute Transport in a
Heterogeneous Field Soil with Fiber Optic Mini Probes
and Time Domain Reflectometry......................... 337
9.5.2 Monitoring Snowmelt-Induced Unsaturated Flow and
Transport Using Electrical Resistivity Tomography and
Suction Samplers......................................... 342
9.5.3 Recommendations for Future Research................... 345
Acknowledgments..................................................... 346
Notation............................................................... 346
References............................................................. 347
Chapter 10 Time Domain Reflectometry as an Alternative in Solute
Transport Studies......................................... 357
Iris Vogeler, Steve Green and Brent E. Clothier
10.1 Introduction..................................................... 358
10.2 TDR System for Monitoring Water and Solute
Transport....................................................... 359
10.2.1 The Measurement System............................... 359
10.2.2 TDR Operation......................................... 359
10.2.3 Experimental Setup for Laboratory Experiments......... 361
10.2.4 Probe Design and Placement............................ 362
10.2.5 TDR Data Analysis..................................... 364
10.2.5.1 Soil Moisture Content......................... 364
10.2.5.2 Solute Concentration.......................... 365
10.2.6 Calibration.............................................. 368
10.2.6.1 Direct Calibration Approach.................. 368
10.2.6.2 Indirect Calibration Approach................. 372
10.2.6.2.1 Pulse Application.................. 372
10.2.6.2.2 Continuous Solute Application___ 373
10.2.7 Transport Models Linked to TDR Measurements........ 374
Table of Contents xxvii
10.2.8 Strength and Weakness of TDR for Solute
Transport Studies....................................... 376
10.3 Application of TDR for Solute Transport Studies................ 377
10.3.1 Steady-State Water Flow and Inert Solutes.............. 377
10.3.2 Transient Flow and Inert Solutes........................ 381
10.3.3 Reactive Solutes......................................... 382
10.4 Recommendations and Future Research......................... 384
Notation............................................................... 385
References............................................................. 386
Chapter 11 Characterization of Solute Transport Through Miscible
Displacement Experiments................................ 391
J. Âlvarez-Benedi, C. M. Regalado, A. Ritter and S. Bolado
11.1 Characterization of Solute Transport............................ 392
11.2 Breakthrough Curve............................................. 395
11.2.1 The Miscible Displacement Experiment and Its
Mathematical Description............................... 395
11.2.1.1 Flux, Resident, and Time-Averaged
Concentrations................................ 397
11.2.1.1.1 Transport Equation............... 397
11.2.1.1.2 Flux, Averaged, and Time
Resident Concentrations........... 398
11.2.1.2 Boundary Conditions.......................... 400
11.2.1.2.1 Inlet Boundary Conditions......... 400
11.2.1.2.2 Outlet Boundary Conditions....... 402
11.2.1.3 Tracers........................................ 403
11.2.2 Analysis of the Breakthrough Curve..................... 404
11.2.2.1 Effect of Transport Mechanisms
on the BTC................................... 404
11.2.2.2 Moment Analysis............................. 406
11.2.2.3 Characterizing Transport Mechanisms
through Inverse Modeling..................... 408
11.2.2.4 Application for Sorbed Solutes:
Estimation of the Retardation Factor.......... 410
11.2.3 Beyond BTC............................................ 412
11.3 Techniques for Characterizing Nonequilibrium
during Solute Transport in Soils................................. 414
11.3.1 Techniques Based on Breakthrough Curves.............. 414
11.3.1.1 Effect of Variation of the Pore Water Velocity. 416
11.3.1.2 Single and Multiple Tracers................... 417
11.3.1.3 Flow-Interruption Technique.................. 417
11.3.2 Estimation of Nonequilibrium Parameters
From Simple Experiments............................... 423
11.3.2.1 Single Tracer.................................. 424
11.3.2.2 Sequential Tracer Technique................... 425
xxviii Table of Contents
11.4 Recommendations and Future Research......................... 426
Acknowledgments..................................................... 427
References............................................................. 428
Chapter 12 Methods to Determine Sorption of Pesticides and Other
Organic Compounds...................................... 435
Juan Cornejo, Ma Carmen Hermosin, Rafael Celis and
Lucia Cox
12.1 Introduction..................................................... 436
12.2 Sorption and Other Soil Processes............................... 438
12.2.1 Sorption-Leaching...................................... 439
12.2.2 Sorption-Degradation................................... 442
12.3 Characterizing Sorption-Desorption Processes................... 443
12.3.1 Measuring Sorption..................................... 443
12.3.1.1 Sorption Equilibrium.......................... 443
12.3.1.2 Desorption.................................... 444
12.3.1.3 Sorption Kinetics.............................. 446
12.3.2 Estimating Sorption..................................... 450
12.3.2.1 Characterizing Sorption at Field Scale......... 450
12.3.2.2 Estimating Sorption from Easily Measurable
Soil Properties................................ 452
12.3.2.2.1 Organic Carbon Content.......... 452
12.3.2.2.2 Clay Content...................... 453
12.3.2.2.3 Other Soil Properties.............. 454
12.3.3 Strengths and Weaknesses............................... 455
12.4 Recommendations and Future Research......................... 455
Acknowledgment...................................................... 456
References............................................................. 456
Chapter 13 Methods for Measuring Soil-Surface Gas Fluxes.......... 465
Philippe Rochette and Sean M. McGinn
13.1 Introduction..................................................... 466
13.2 Soil Mass Balance Approach.................................... 467
13.3 Chamber Techniques............................................ 468
13.3.1 Chamber Impacts on Fg................................. 468
13.3.1.1 Soil and Air Temperature and Humidity....... 468
13.3.1.2 Chamber Headspace Gas Concentration....... 469
13.3.2 Chamber Design........................................ 470
13.3.3 Air Sampling and Gas Concentration Analysis........... 471
13.3.4 Chamber Types......................................... 472
13.3.4.1 Steady-State Chambers........................ 473
13.3.4.1.1 Flow-Through SS Chambers....... 473
13.3.4.1.2 Non-Flow-Through SS Chambers.. 474
13.3.4.2 Non-Steady-State Chambers.................. 476
Table of Contents xxix
13.3.4.2.1 Non-Flow-Through Chambers..... 478
13.3.4.2.2 Flow-Through Chambers.......... 479
13.3.5 Strengths and Weaknesses of Chamber Techniques...... 479
13.4. Mass Exchange Using Micrometeorological Techniques......... 479
13.4.1 Aerodynamic Technique................................. 480
13.4.2 Bowen Ratio-Energy Balance Technique................ 482
13.4.3 Eddy Covariance Technique............................. 485
13.4.4 Relaxed Eddy Accumulation Technique................. 486
13.4.5 Combined Techniques................................... 487
13.4.6 Integrated Horizontal Flux Technique................... 487
13.4.7 Mass Difference Technique.............................. 489
13.4.8 Theoretical Profile Shape Technique..................... 489
13.4.9 Backward Lagrangian Stochastic Technique............. 491
13.4.10 Strengths and Weaknesses of Micrometeorological
Techniques............................................. 492
13.5 Recommendations and Future Research......................... 494
Notation............................................................... 495
References............................................................. 496
Chapter 14 Chemical Methods for Soil and Water Characterization ... 503
Yuncong Li, Meifang Zhou and Jianqiang Zhao
14.1 Introduction..................................................... 505
14.1.1 Criteria for Method Selection............................ 506
14.1.1.1 Using Standard Methods...................... 506
14.1.1.2 Fitting to Analytical Purposes................. 507
14.1.1.3 Meeting the Method Detection Limit.......... 507
14.1.2 Assessment of Uncertainty.............................. 516
14.2 Critical Discussion of Analytical Methods of Soil and Water..... 517
14.2.1 Nitrogen................................................ 517
14.2.1.1 Nitrogen in Soil and Water.................... 517
14.2.1.2 Laboratory Methods for Ammonia
Determination................................. 518
14.2.1.2.1 Indophenol Blue Colorimetry...... 519
14.2.1.2.2 Ion-Selective Electrode............ 519
14.2.1.2.3 Distillation-Titrimetric Method .... 520
14.2.1.2.4 Nontraditional, New, or Advanced
Methods.......................... 520
14.2.1.3 In Situ Methods for Ammonia Determination . 521
14.2.1.3.1 Field Testing Kits................. 521
14.2.1.3.2 Field Monitoring Probes........... 521
14.2.1.3.3 Sophisticated Instruments for Field
Analysis........................... 521
14.2.1.4 Laboratory Methods for Nitrate and Nitrite
Determination................................. 521
14.2.1.4.1 Griess Assay...................... 522
xxx Table of Contents
14.2.1.4.2 Using Copper-Cadmium.......... 523
14.2.1.4.3 Use of Hydrazine Sulfate.......... 523
14.2.1.4.4 Ion Chromatography.............. 524
14.2.1.4.5 UV Method....................... 525
14.2.1.4.6 Nitrate Electrode.................. 525
14.2.1.4.7 Nontraditional, New, or
Advanced Methods of Capillary
Electrophoresis.................... 526
14.2.1.4.8 Photochemical and Enzymatic
Nitrate Reductions................ 526
14.2.1.5 In Situ Methods for Nitrate Determination .... 527
14.2.1.5.1 Field Testing Kits................. 527
14.2.1.5.2 Field Monitoring Probes........... 527
14.2.1.5.3 Sophisticated Instruments for Field
Analysis........................... 527
14.2.1.6 Organic N Determination..................... 527
14.2.1.6.1 Kjeldahl Method.................. 528
14.2.1.6.2 Persulfate Method................. 528
14.2.1.6.3 High-Temperature Combustion
Method........................... 528
14.2.1.6.4 Nontraditional, New, or Advanced
Methods.......................... 529
14.2.2 Phosphorus............................................. 529
14.2.2.1 Phosphorus in Soil and Water................. 529
14.2.2.2 Laboratory Methods for Phosphorus Determi-
nation......................................... 533
14.2.2.2.1 Colorimetry Methods.............. 533
14.2.2.2.2 Chromatographie Techniques...... 534
14.2.2.2.3 Digestion Method................. 535
14.2.2.2.4 Nontraditional, New, or Advanced
Methods.......................... 536
14.2.2.3 In Situ Methods for Phosphorus Determination 537
14.2.3 Metals.................................................. 538
14.2.3.1 Metals in Soil and Water...................... 538
14.2.3.2 Laboratory Methods for Metal Determination. 539
14.2.3.3 In Situ Method for Metal Determination...... 539
14.2.4 Organic Matter/Carbon................................. 540
14.2.4.1 Organic Carbon in Soils and Water............ 540
14.2.4.2 Organic Carbon Determination................ 540
14.2.4.2.1 Walkley-Black Method (Wet Oxi-
dation) ............................ 541
14.2.4.2.2 Carbon Analyzers (Dry Combus-
tion) .............................. 541
14.2.4.2.3 Loss-on-Ignition................... 541
14.2.5 Pesticides............................................... 543
Table of Contents xxxj
14.2.5.1 Pesticides in Soil and Water................... 543
14.2.5.2 Sample Preparation........................... 543
14.2.5.3 General Approach for Screening Pesticides in
Soil and Water................................ 544
14.2.5.4 Laboratory Methods for Pesticide Determination 545
14.2.5.4.1 Gas Chromatography.............. 545
14.2.5.4.2 High Performance Liquid Chroma-
tography .......................... 547
14.2.5.4.3 Mass Spectrometry................ 548
14.2.5.5 In Situ Methods for Pesticide Determination... 549
14.3 Recommendations and Future Trends........................... 549
Acknowledgments..................................................... 550
References............................................................. 551
Section IV
Soil and Microorganisms
Chapter 15 Evaluation and Characterization of Soil
Microbiological Processes................................. 559
Mikael Pell and John Stenström
15.1 Introduction..................................................... 559
15.2 Basic Soil Microbiology......................................... 560
15.2.1 The Actors.............................................. 561
15.2.1.1 Activity....................................... 561
15.2.1.2 Diversity...................................... 561
15.2.1.3 Biomass....................................... 562
15.2.2 Soil as a Microbial Habitat.............................. 562
15.3 Methods for Microbial Soil Characterization..................... 564
15.3.1 Sampling and Soil Handling............................. 564
15.3.2 Soil Respiration, Denitrification, and Nitrification....... 566
15.3.3 Activity................................................. 567
15.3.4 Diversity................................................ 569
15.3.5 Enumeration and Biomass............................... 571
15.3.6 Choice of Method....................................... 573
15.4 Some Applications.............................................. 575
15.4.1 Toxicity Testing......................................... 575
15.4.2 Integrated Approach.................................... 576
15.4.3 Variation................................................ 576
15.5 Recommendations and Future Research......................... 579
15.5.1 Recommendations....................................... 579
15.5.2 Future Research........................................ 579
References............................................................. 580
xxxü Table of Contents
Section V
Spatial Variability and Scale Issues
Chapter 16 Geostatistical Procedures for Characterizing Soil Processes . 585
Marc Van Meirvenne, Lieven Vernaillen, Ahmed Douaik,
Niko E. C. Verhoest and Moira Callens
16.1 Introduction — Why Geostatistics?.............................. 586
16.2 Geostatistics..................................................... 587
16.2.1 Theoretical Concepts.................................... 587
16.2.1.1 Strict Stationarity............................. 588
16.2.1.2 Second-Order Stationarity..................... 588
16.2.1.3 Intrinsic Hypothesis........................... 589
16.2.2 Variogram Estimation................................... 589
16.2.3 Models for Variograms.................................. 590
16.2.4 Kriging Interpolation.................................... 591
16.2.4.1 Univariate Estimation of Z.................... 591
16.2.4.2 Multivariate Estimation of Z.................. 592
16.2.4.2.1 Limited Number of
Secondary Data................... 592
16.2.4.2.2 Exhaustive Secondary Data........ 594
16.2.4.3 Strongly Skewed Distributions................. 596
16.2.4.3.1 Robust Variograms................ 596
16.2.4.3.2 Lognormal Kriging................ 597
16.2.4.4 Local Spatial Uncertainty..................... 597
16.2.4.4.1 Indicator Kriging.................. 598
16.2.4.4.2 Bayesian Maximum Entropy....... 601
16.2.4.5 Conditional Simulation........................ 603
16.3 Geostatistical Sampling.......................................... 605
16.3.1 Sampling Support....................................... 605
16.3.2 Number of Samples..................................... 605
16.3.3 Sampling Configuration and Sampling Goal............. 606
16.3.4 Method of Data Analysis............................... 607
16.3.5 Secondary Information.................................. 607
16.4 Case Study: Exploring the Soil Moisture-
Landscape Relationship......................................... 608
16.4.1 Introduction............................................ 608
16.4.2 Materials and Methods.................................. 608
16.4.3 Results.................................................. 609
16.5 Conclusions..................................................... 614
References............................................................. 614
Chapter 17 Soil Variability Assessment with Fractal Techniques....... 617
A. N. Kravchenko and Y. A. Pachepsky
Table of Contents xxxiii
17.1 Introduction..................................................... 617
17.2 Fractal Models and Parameters of Spatial Variability............ 619
17.2.1 Monofractal Models.................................... 620
17.2.2 Multifractal Models..................................... 626
17.2.3 Multifractal Spectra..................................... 627
17.3 Simulating Spatial Variability with Fractal Models............... 632
17.4 Summary, Critical Assessment, and Future Research............. 634
References............................................................. 635
Chapter 18 Geospatial Measurements of Apparent Soil
Electrical Conductivity for Characterizing Soil
Spatial Variability........................................ 639
Dennis L. Corwin
18.1 Introduction..................................................... 640
18.1.1 Justification for Characterizing Spatial Variability
with Geospatial ECa Measurements..................... 640
18.1.2 Edaphic Factors Influencing ECa Measurements......... 642
18.1.3 Mobile ECa Measurement Equipment................... 644
18.2 Guidelines for Conducting an £ Ca-Directed Soil
Sampling Survey................................................ 646
18.3 Strengths and Limitations....................................... 647
18.4 Characterizing Spatial Variability with £Ca-Directed Soil
Sampling: Case Studies.......................................... 650
18.4.1 Landscape-Scale Solute Transport in the
Vadose Zone............................................ 652
18.4.2 Assessing Soil Quality and Spatio-Temporal
Changes in Soil Quality................................. 658
18.4.3 Delineating Site-Specific Management Units for
Precison Agriculture..................................... 660
18.5 Future Directions............................................... 662
Acknowledgments..................................................... 664
References............................................................. 664
Section VI
Modeling Tools
Chapter 19 Assessment of Uncertainty Associated with the
Extent of Simulation Processes from Point to Catchment:
Application to ID Pesticide Leaching Models............. 673
Marco Trevisan and Costantino Vischetti
19.1 Introduction..................................................... 674
19.2 Spatialization of ID Models..................................... 676
19.2.1 General................................................. 676
xxxiv Table of Contents
19.2.2 Proposed Protocol...................................... 677
19.2.2.1 Data Collection............................... 677
19.2.2.2 Determination of Number of Simulations...... 677
19.2.2.2.1 All Cells........................... 678
19.2.2.2.2 Unique Combination Approach— 678
19.2.2.2.3 Meta-Model....................... 679
19.2.2.3 Mapping...................................... 679
19.2.3 Uncertainty Linked to Deterministic Simulations........ 680
19.2.3.1 General....................................... 680
19.2.3.2 Proposed Protocol ............................ 681
19.3 Examples........................................................ 685
19.3.1 Spatialization of ID Models............................. 685
19.3.2 Probability Analysis of Uncertainty Linked to
Deterministic Simulations............................... 687
19.4 Recommendations and Future Research......................... 688
References............................................................. 690
Chapter 20 Inverse Modeling Techniques to Characterize Transport
Processes in the Soil-Crop Continuum..................... 693
S. Lambot, M. Javaux, F. Hupet and
M. Vanclooster
20.1 Introduction..................................................... 694
20.2 The Forward Model............................................. 695
20.2.1 Existence................................................ 696
20.2.2 Identifiability, Uniqueness, and Sensitivity............... 696
20.2.3 Model Adequacy........................................ 697
20.3 Objective Function.............................................. 697
20.3.1 Definition............................................... 697
20.3.2 Multi-Informative Objective Functions.................. 699
20.3.2.1 Use of Prior Information...................... 700
20.3.2.2 Use of Different Sources of Information....... 700
20.4 Optimization Algorithms........................................ 701
20.5 Assessing the Well-Posedness of the Inverse Problem............. 703
20.5.1 Response Surface Analysis.............................. 703
20.5.2 Validity................................................. 706
20.5.3 Uncertainty Analysis.................................... 706
20.5.4 Stability analysis........................................ 707
References............................................................. 709
Chapter 21 Computer Models for Characterizing the Fate of
Chemicals in Soil: Pesticide Leaching Models and
Their Practical Applications............................... 715
Anna Paula Karoliina Jantunen, Marco Trevisan and
Ettore Capri
Table of Contents xxxv
21.1 Introduction: State of The Art on the Use of Pesticide
Leaching and Dissipation Models................................ 716
21.1.1 Model Selection......................................... 717
21.1.1.1 Purpose of the Model......................... 717
21.1.1.2 Processes Considered by the Model............ 718
21.1.1.3 Scale.......................................... 718
21.1.1.3.1 Temporal Scale.................... 718
21.1.1.3.2 Spatial Scale....................... 718
21.1.1.4 Construction of the Model.................... 719
21.1.1.5 Model Inputs................................. 726
21.1.1.6 Model Outputs................................ 726
21.1.1.7 User Requirements............................ 727
21.1.1.8 Reliability..................................... 727
21.1.2 Correct Use of Models.................................. 728
21.1.3 Model Calibration...................................... 729
21.1.4 Model Validation....................................... 729
21.1.5 Parameterization........................................ 729
21.1.6 Assessing the Reliability of Modeling Results............ 730
21.2 Modeling Soil-Pesticide Interactions............................. 730
21.2.1 The Environmental Fate of Pesticides Applied on
Agricultural Fields...................................... 730
21.2.2 Modeling Strategies..................................... 731
21.2.2.1 Soil Properties................................ 731
21.2.2.2 Soil Hydrology................................ 732
21.2.2.3 Pesticide Properties............................ 733
21.2.2.4 Pesticide-Soil Processes........................ 734
21.3 Current Pesticide Leaching Models.............................. 735
21.3.1 General Structure of Mathematical Pesticide
Leaching Models........................................ 735
21.3.2 Current Leaching Modes................................ 738
21.3.3 Applications............................................ 739
21.3.3.1 Research...................................... 740
21.3.3.2 Environmental Management................... 742
21.3.3.3 Farm Management............................ 743
21.3.3.4 Large-Scale Vulnerability Assessment.......... 744
21.3.3.5 Pesticide Registration ......................... 745
21.4 Case Studies..................................................... 747
21.4.1 Pesticides in Italian Horticulture: Potential of
Groundwater Contamination and Carryover Effects..... 747
21.4.2 SuSAP Decision Support System for the Region
of Lombardy, Italy...................................... 748
21.4.3 FOCUS................................................. 749
References............................................................. 751
Index........ ........................................ 757
|
any_adam_object | 1 |
author | Álvarez-Benedí, Javier |
author_facet | Álvarez-Benedí, Javier |
author_role | aut |
author_sort | Álvarez-Benedí, Javier |
author_variant | j á b jáb |
building | Verbundindex |
bvnumber | BV019340103 |
callnumber-first | S - Agriculture |
callnumber-label | S594 |
callnumber-raw | S594 |
callnumber-search | S594 |
callnumber-sort | S 3594 |
callnumber-subject | S - General Agriculture |
classification_rvk | RB 10354 |
classification_tum | BAU 213f UMW 331f LAN 117f |
ctrlnum | (OCoLC)55955285 (DE-599)BVBBV019340103 |
dewey-full | 631.4/32/011 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 631 - Techniques, equipment & materials |
dewey-raw | 631.4/32/011 |
dewey-search | 631.4/32/011 |
dewey-sort | 3631.4 232 211 |
dewey-tens | 630 - Agriculture and related technologies |
discipline | Agrarwissenschaft Bauingenieurwesen Agrar-/Forst-/Ernährungs-/Haushaltswissenschaft / Gartenbau Umwelt Pflanzenbau Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02109nam a2200529 c 4500</leader><controlfield tag="001">BV019340103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050830 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040720s2005 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1566706572</subfield><subfield code="9">1-5667-0657-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55955285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019340103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-M49</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S594</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">631.4/32/011</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10354</subfield><subfield code="0">(DE-625)142220:12705</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 213f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 331f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LAN 117f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Álvarez-Benedí, Javier</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soil water solute process characterization</subfield><subfield code="b">an integrated approach</subfield><subfield code="c">ed. by Javier Álvarez-Benedí ...</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Soil-water-solute process characterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 778 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eau souterraine - Écoulement - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sols - Humidité - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sols - Perméabilité - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sols - Transfert des solutés - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater flow</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil moisture</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil permeability</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soils</subfield><subfield code="x">Solute movement</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bodenwasserstrom</subfield><subfield code="0">(DE-588)4694360-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bodenwasserhaushalt</subfield><subfield code="0">(DE-588)4007421-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bodenwasserhaushalt</subfield><subfield code="0">(DE-588)4007421-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bodenwasserstrom</subfield><subfield code="0">(DE-588)4694360-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012804669&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012804669</subfield></datafield></record></collection> |
id | DE-604.BV019340103 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:58:00Z |
institution | BVB |
isbn | 1566706572 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012804669 |
oclc_num | 55955285 |
open_access_boolean | |
owner | DE-703 DE-M49 DE-BY-TUM |
owner_facet | DE-703 DE-M49 DE-BY-TUM |
physical | XXXV, 778 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | CRC Press |
record_format | marc |
spelling | Álvarez-Benedí, Javier Verfasser aut Soil water solute process characterization an integrated approach ed. by Javier Álvarez-Benedí ... Soil-water-solute process characterization Boca Raton [u.a.] CRC Press 2005 XXXV, 778 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Eau souterraine - Écoulement - Modèles mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Sols - Transfert des solutés - Modèles mathématiques Mathematisches Modell Groundwater flow Mathematical models Soil moisture Mathematical models Soil permeability Mathematical models Soils Solute movement Mathematical models Bodenwasserstrom (DE-588)4694360-2 gnd rswk-swf Bodenwasserhaushalt (DE-588)4007421-3 gnd rswk-swf Bodenwasserhaushalt (DE-588)4007421-3 s DE-604 Bodenwasserstrom (DE-588)4694360-2 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012804669&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Álvarez-Benedí, Javier Soil water solute process characterization an integrated approach Eau souterraine - Écoulement - Modèles mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Sols - Transfert des solutés - Modèles mathématiques Mathematisches Modell Groundwater flow Mathematical models Soil moisture Mathematical models Soil permeability Mathematical models Soils Solute movement Mathematical models Bodenwasserstrom (DE-588)4694360-2 gnd Bodenwasserhaushalt (DE-588)4007421-3 gnd |
subject_GND | (DE-588)4694360-2 (DE-588)4007421-3 |
title | Soil water solute process characterization an integrated approach |
title_alt | Soil-water-solute process characterization |
title_auth | Soil water solute process characterization an integrated approach |
title_exact_search | Soil water solute process characterization an integrated approach |
title_full | Soil water solute process characterization an integrated approach ed. by Javier Álvarez-Benedí ... |
title_fullStr | Soil water solute process characterization an integrated approach ed. by Javier Álvarez-Benedí ... |
title_full_unstemmed | Soil water solute process characterization an integrated approach ed. by Javier Álvarez-Benedí ... |
title_short | Soil water solute process characterization |
title_sort | soil water solute process characterization an integrated approach |
title_sub | an integrated approach |
topic | Eau souterraine - Écoulement - Modèles mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Sols - Transfert des solutés - Modèles mathématiques Mathematisches Modell Groundwater flow Mathematical models Soil moisture Mathematical models Soil permeability Mathematical models Soils Solute movement Mathematical models Bodenwasserstrom (DE-588)4694360-2 gnd Bodenwasserhaushalt (DE-588)4007421-3 gnd |
topic_facet | Eau souterraine - Écoulement - Modèles mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Sols - Transfert des solutés - Modèles mathématiques Mathematisches Modell Groundwater flow Mathematical models Soil moisture Mathematical models Soil permeability Mathematical models Soils Solute movement Mathematical models Bodenwasserstrom Bodenwasserhaushalt |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012804669&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT alvarezbenedijavier soilwatersoluteprocesscharacterizationanintegratedapproach AT alvarezbenedijavier soilwatersoluteprocesscharacterization |