Nonlinear dynamics in physiology and medicine:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2003
|
Schriftenreihe: | Interdisciplinary applied mathematics
25 : Mathematical biology |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 385 - 426 |
Beschreibung: | XXVI, 434 S. graph. Darst. : 24 cm |
ISBN: | 9781441918215 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV019317128 | ||
003 | DE-604 | ||
005 | 20221010 | ||
007 | t | ||
008 | 040609s2003 gw d||| |||| 00||| eng d | ||
020 | |a 9781441918215 |9 978-1-4419-1821-5 | ||
035 | |a (OCoLC)51818664 | ||
035 | |a (DE-599)BVBBV019317128 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-91G |a DE-526 |a DE-83 |a DE-19 | ||
050 | 0 | |a QP33.6.M36 | |
082 | 0 | |a 612/.001/5118 |2 21 | |
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
084 | |a PHY 820f |2 stub | ||
084 | |a 92Cxx |2 msc | ||
084 | |a BIO 105f |2 stub | ||
084 | |a MAT 587f |2 stub | ||
084 | |a BIO 210f |2 stub | ||
084 | |a CHE 802f |2 stub | ||
084 | |a MED 230f |2 stub | ||
245 | 1 | 0 | |a Nonlinear dynamics in physiology and medicine |c Anne Beuter .. ed. |
264 | 1 | |a New York [u.a.] |b Springer |c 2003 | |
300 | |a XXVI, 434 S. |b graph. Darst. : 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary applied mathematics |v 25 : Mathematical biology | |
500 | |a Literaturverz. S. 385 - 426 | ||
650 | 7 | |a Fisiologia (modelos matemáticos) |2 larpcal | |
650 | 7 | |a Matemática aplicada |2 larpcal | |
650 | 7 | |a Medicina (modelos matemáticos) |2 larpcal | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Nonlinear Dynamics | |
650 | 4 | |a Nonlinear systems | |
650 | 4 | |a Physiology |x Mathematical models | |
650 | 4 | |a Physiology |x methods | |
650 | 0 | 7 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physiologie |0 (DE-588)4045981-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physiologie |0 (DE-588)4045981-0 |D s |
689 | 0 | 1 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Beuter, Anne |e Sonstige |4 oth | |
830 | 0 | |a Interdisciplinary applied mathematics |v 25 : Mathematical biology |w (DE-604)BV004216726 |9 25 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012784627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012784627 |
Datensatz im Suchindex
_version_ | 1804132732790374400 |
---|---|
adam_text | ANNE BEUTER LEON GLASS MICHAEL C. MACKEY MICHELE S. TITCOMBE EDITORS
NONLINEAR DYNAMICS IN PHYSIOLOGY AND MEDICINE WITH 162 ILLUSTRATIONS
UNIVERSITATS- UND LANDES- BIBLIOTHEK DARMSTADT BIBLIOTHEK BIOLOGIC
SPRINGER CONTENTS PREFACE VII SOURCES AND CREDITS XI 1 THEORETICAL
APPROACHES IN PHYSIOLOGY 1 MICHAEL C. MACKEY AND ANNE BEUTER 1.1
INTRODUCTION : . . . 1 1.2 A WEE BIT OF HISTORY TO MOTIVATE THINGS 1
1.2.1 EXCITABLE CELLS 1 1.2.2 LITTLE NERVOUS SYSTEMS 4 1.2.3 SOME OTHER
EXAMPLES 5 1.2.4 IMPACT & LESSONS 6 1.2.5 SUCCESSFUL COLLABORATIONS 7 2
INTRODUCTION TO DYNAMICS IN NONLINEAR DIFFERENCE AND DIFFERENTIAL
EQUATIONS . . 9 JACQUES BELAIR AND LEON GLASS 2.1 MAIN CONCEPTS IN
NONLINEAR DYNAMICS . ., 10 2.2 DIFFERENCE EQUATIONS IN ONE DIMENSION 12
2.2.1 STABILITY AND BIFURCATIONS 13 2.3 ORDINARY DIFFERENTIAL EQUATIONS
........-.: 19 2.3.1 ONE-DIMENSIONAL NONLINEAR DIFFERENTIAL EQUATIONS 20
2.3.2 TWO-DIMENSIONAL DIFFERENTIAL EQUATIONS 22 2.3.3 THREE-DIMENSIONAL
ORDINARY DIFFERENTIAL * EQUATIONS 26 2.4 LIMIT CYCLES AND THE HOPF
BIFURCATION * 27 2.5 TIME-DELAY DIFFERENTIAL EQUATIONS 29 2.6 THE
POINCARE MAP 31 2.7 CONCLUSIONS 34 2.8 COMPUTER EXERCISES: ITERATING
FINITE-DIFFERENCE EQUATIONS :..-..* 34 2.9 COMPUTER EXERCISES: GEOMETRY
OF FIXED POINTS IN TWO-DIMENSIONAL MAPS 37 XX CONTENTS 3 BIFURCATIONS
INVOLVING FIXED POINTS AND LIMIT CYCLES IN BIOLOGICAL SYSTEMS 41 MICHAEL
R. GUEVARA 3.1 INTRODUCTION . 41 3.2 SADDLE-NODE BIFURCATION OF FIXED
POINTS ..... , 42 3.2.1 BISTABILITY IN A NEURAL SYSTEM 42 3.2.2
SADDLE-NODE BIFURCATION OF FIXED POINTS IN A ONE-DIMENSIONAL SYSTEM 44
3.2.3 SADDLE-NODE BIFURCATION OF FIXED POINTS IN A TWO-DIMENSIONAL
SYSTEM 46 3.2.4 BISTABILITY IN A NEURAL SYSTEM (REVISITED) 48 3.2.5
BISTABILITY IN VISUAL PERCEPTION 48 3.3 PITCHFORK BIFURCATION OF FIXED
POINTS 50 3.3.1 PITCHFORK BIFURCATION OF FIXED POINTS IN A,
ONE-DIMENSIONAL SYSTEM 50 3.3.2 PITCHFORK BIFURCATION OF FIXED POINTS IN
A TWO- DIMENSIONAL SYSTEM 52 3.3.3 THE CUSP CATASTROPHE 52 3.4
TRANSCRITICAL BIFURCATION OF FIXED POINTS 53 3.4.1 TRANSCRITICAL
BIFURCATION OF FIXED POINTS IN A ONE-DIMENSIONAL SYSTEM 53 3.4.2
TRANSCRITICAL BIFURCATION OF FIXED POINTS IN A TWO-DIMENSIONAL SYSTEM 55
3.5 SADDLE-NODE BIFURCATION OF LIMIT CYCLES 57 3.5.1 ANNIHILATION AND
SINGLE-PULSE TRIGGERING 57 3.5.2 TOPOLOGY OF ANNIHILATION AND
SINGLE-PULSE TRIGGERING 58 3.5.3 SADDLE-NODE BIFURCATION OF LIMIT CYCLES
60 3.5.4 SADDLE-NODE BIFURCATION IN THE HODGKIN-HUXLEY EQUATIONS 61
3.5.5 HYSTERESIS AND HARD OSCILLATORS 63 3.5.6 FLOQUET MULTIPLIERS AT
THE SADDLE-NODE BIFURCATION 64 3.5.7 BISTABILITY OF PERIODIC ORBITS 66
3.6 PERIOD-DOUBLING BIFURCATION OF LIMIT CYCLES 69 3.6.1 PHYSIOLOGICAL
EXAMPLES OF PERIOD-DOUBLING BIFURCATIONS 69 3.6.2 THEORY OF
PERIOD-DOUBLING BIFURCATIONS OF LIMIT CYCLES * 70 3.6.3 IFLOQUET
MULTIPLIERS AT THE PERIOD-DOUBLING BIFURCATION *. 72 3.7 TORUS
BIFURCATION . . .* 74 3.8 HOMOCLINIC BIFURCATION 77 3.9 CONCLUSIONS
... .* 79 3.10 PROBLEMS -.... 80 CONTENTS XXI 3.11 COMPUTER EXERCISES:
NUMERICAL ANALYSIS OF BIFURCATIONS INVOLVING FIXED POINTS 82 3.12
ADDITIONAL COMPUTER EXERCISES . 85 4 DYNAMICS OF EXCITABLE CELLS 87
MICHAEL R. GUEVARA 4.1 INTRODUCTION 87 4.2 THE GIANT AXON OF THE SQUID
87 4.2.1 ANATOMY OF THE GIANT AXON OF THE SQUID . . . . . 87 4.2.2
MEASUREMENT OF THE TRANSMEMBRANE POTENTIAL . . 88 4.3 BASIC
ELECTROPHYSIOLOGY 88 4.3.1 IONIC BASIS OF THE ACTION POTENTIAL 88 4.3.2
SINGLE-CHANNEL RECORDING 89 4.3.3 THE NERNST POTENTIAL 91 4.3.4 A LINEAR
MEMBRANE 92 4.4 VOLTAGE-CLAMPING 93 4.4.1 THE VOLTAGE-CLAMP TECHNIQUE 93
4.4.2 A VOLTAGE-CLAMP EXPERIMENT 94 4.4.3 SEPARATION OF THE VARIOUS
IONIC CURRENTS 94 4.5 THE HODGKIN-HUXLEY FORMALISM 95 4.5.1
SINGLE-CHANNEL RECORDING OF THE POTASSIUM CURRENT 95 4.5.2 KINETICS OF
THE POTASSIUM CURRENT /K 96 4.5.3 SINGLE-CHANNEL RECORDING OF THE SODIUM
CURRENT . 98 4.5.4 KINETICS OF THE SODIUM. CURRENT / NA 99 4.5.5 THE
HODGKIN-HUXLEY EQUATIONS 102 4.5.6 THE FITZHUGH-NAGUMO EQUATIONS 104 4.6
CONCLUSIONS 105 4.7 COMPUTER EXERCISES: A NUMERICAL STUDY ON THE
HODGKIN-HUXLEY EQUATIONS 106 4.8 COMPUTER EXERCISES: A NUMERICAL STUDY
ON THE FITZHUGH-NAGUMO EQUATIONS 115 5 RESETTING AND ENTRAINING
BIOLOGICAL RHYTHMS 123 LEON GLASS 5.1 INTRODUCTION 123 5.2 MATHEMATICAL
BACKGROUND 125 5.2.1 W-ISOCHRONS AND THE PERTURBATION OF BIOLOGICAL
OSCILLATIONS BY A SINGLE STIMULUS 125 5.2.2 PHASE LOCKING OF LIMIT
CYCLES BY PERIODIC STIMULATION 128 5.3 THE POINCARE OSCILLATOR 130 5.4 A
SIMPLE CONDUCTION MODEL 136 5.5 RESETTING AND ENTRAINMENT OF CARDIAC
OSCILLATIONS .... 140 5.6 CONCLUSIONS 142 XXII CONTENTS 5.7
ACKNOWLEDGMENTS 144 5.8 PROBLEMS 145 5.9 COMPUTER EXERCISES: RESETTING
CURVES FOR THE POINCARE OSCILLATOR 146 6 EFFECTS OF NOISE ON NONLINEAR
DYNAMICS 149 ANDRE LONGTIN 6.1 INTRODUCTION 149 6.2 DIFFERENT KINDS OF
NOISE 151 6.3 THE LANGEVIN EQUATION 152 6.4 PUPIL LIGHT REFLEX:
DETERMINISTIC DYNAMICS 155 6.5 PUPIL LIGHT REFLEX: STOCHASTIC DYNAMICS
159 6.6 POSTPONEMENT OF THE HOPF BIFURCATION 159 6.7 STOCHASTIC PHASE
LOCKING 162 6.8 THE PHENOMENOLOGY OF SKIPPING 165 6.9 MATHEMATICAL
MODELS OF SKIPPING 167 6.10 STOCHASTIC RESONANCE 172 6.11 NOISE MAY
ALTER THE SHAPE OF TUNING CURVES 175 6.12 THERMORECEPTORS 178 6.13
AUTONOMOUS STOCHASTIC RESONANCE 180 6.14 CONCLUSIONS 182 6.15 COMPUTER
EXERCISES: LANGEVIN EQUATION 184 6.16 COMPUTER EXERCISES: STOCHASTIC
RESONANCE 186 7 REENTRY IN EXCITABLE MEDIA 191 MARC COURTEMANCHE AND
ALAIN VINET 7.1 INTRODUCTION . -. 191 7.2 EXCITABLE CARDIAC CELL 192
7.2.1 THRESHOLD 192 7.2.2 ACTION POTENTIAL DURATION 194 7.2.3
PROPAGATION OF EXCITATION 196 7.2.4 STRUCTURE OF THE TISSUE 196 7.3
CELLULAR AUTOMATA 198 7.3.1 WIENER AND ROSENBLUETH MODEL 198 7.3.2
IMPROVEMENTS 202 7.4 ITERATIVE AND DELAY MODELS 203 7.4.1 ZYKOV MODEL ON
A RING 204 7.4.2 DELAY EQUATION : . . 204 7.4.3 CIRCULATION ON THE RING
WITH VARIATION OF THE ACTION POTENTIAL DURATION 205 7.4.4 DELAY EQUATION
WITH DISPERSION AND RESTITUTION . 206 7.5 PARTIAL DIFFERENTIAL EQUATION
REPRESENTATION OF THE CIRCULATION 212 7.5.1 IONIC MODEL 212 7.5.2
ONE-DIMENSIONAL RING 215 CONTENTS XXIII 7.6 REENTRY IN TWO DIMENSIONS
216 7.6.1 REENTRY AROUND AN OBSTACLE 216 7.6.2 SIMPLIFYING COMPLEX
TISSUE STRUCTURE 218 7.6.3 SPIRAL BREAKUP 219 7.7. CONCLUSIONS 223 7.8
COMPUTER EXERCISES: REENTRY USING CELLULAR AUTOMATA . . 224 CELL
REPLICATION AND CONTROL 233 MICHAEL C. MACKEY, CAROLINE HAURIE, AND
JACQUES BELAIR 8.1 INTRODUCTION 233 8.2 REGULATION OF HEMATOPOIESIS 235
8.3 PERIODIC HEMATOLOGICAL DISORDERS 237 8.3.1 UNCOVERING OSCILLATIONS
237 8.3.2 CYCLICAL NEUTROPENIA 237 8.3.3 OTHER PERIODIC HEMATOLOGICAL
DISORDERS ASSOCIATED WITH BONE MARROW DEFECTS 242 8.3.4 PERIODIC
HEMATOLOGICAL DISORDERS OF PERIPHERAL ORIGIN 244 8.4 PERIPHERAL CONTROL
OF NEUTROPHIL PRODUCTION AND CYCLICAL NEUTROPENIA . 244 8.4.1 HYPOTHESES
FOR THE ORIGIN OF CYCLICAL NEUTROPENIA. 244 8.4.2 CYCLICAL NEUTROPENIA
IS NOT DUE TO PERIPHERAL DESTABILIZATION 246 8.5 STEM CELL DYNAMICS AND
CYCLICAL NEUTROPENIA 256 8.5.1 UNDERSTANDING EFFECTS OF GRANULOCYTE
COLONY STIMULATING FACTOR IN CYCLICAL NEUTROPENIA .... 259 8.6
CONCLUSIONS * 263 8.7 COMPUTER EXERCISES: DELAY DIFFERENTIAL EQUATIONS,
ERYTHROCYTE PRODUCTION AND CONTROL . . . 263 PUPIL LIGHT REFLEX: DELAYS
AND OSCILLATIONS 271 JOHN MILTON 9.1 INTRODUCTION : 271 9.2 WHERE DO
TIME DELAYS COME FROM? . 271 9.3 PUPIL SIZE 273 9.4 PUPIL LIGHT REFLEX
. . . 275 9.5 MATHEMATICAL MODEL 276 9.6 STABILITY ANALYSIS 279 9.7
PUPIL CYCLING 282 9.8 LOCALIZATION OF THE NONLINEARITIES 288 9.8.1
RETINAL GANGLION CELL MODELS 290 9.8.2 IRIS MUSCULATURE EFFECTS 290 9.9
SPONTANEOUS PUPIL OSCILLATIONS? 291 9.10 PUPILLARY NOISE . . . 292
9.10.1 NOISY PUPILLOMETERS 293 XXIV CONTENTS 9.10.2 PARAMETER ESTIMATION
295 9.11 CONCLUSIONS 296 9.12 PROBLEMS . . . . . . : 296 9.13 COMPUTER
EXERCISES: PUPIL-SIZE EFFECT AND SIGNAL RECOVERY 297 9.14 COMPUTER
EXERCISES: NOISE AND THE PUPIL LIGHT REFLEX . . 299 10 DATA ANALYSIS AND
MATHEMATICAL MODELING OF HUMAN TREMOR 303 ANNE BEUTER, RODERICK EDWARDS,
AND MICHELE S. TITCOMBE 10.1 INTRODUCTION 303 10.2 BACKGROUND ON TREMOR
304 10.2.1 DEFINITION, CLASSIFICATION, AND MEASUREMENT OF TREMOR 304
10.2.2 PHYSIOLOGY OF TREMOR 308 10.2.3 CHARACTERISTICS OF TREMOR IN
PATIENTS WITH PARKINSON S DISEASE 310 10.2.4 CONVENTIONAL METHODS USED
TO ANALYZE TREMOR . . 312 10.2.5 INITIAL ATTEMPTS TO MODEL HUMAN TREMOR
314 10.3 LINEAR TIME SERIES ANALYSIS CONCEPTS 316 10.3:1 DISPLACEMENT
VS. VELOCITY VS. ACCELERATION 316 10.3.2 AMPLITUDE 320 10.3.3 FREQUENCY
ESTIMATION 322 10.3.4 CLOSENESS TO A SINUSOIDAL OSCILLATION 323 10.3.5
AMPLITUDE FLUCTUATIONS 323 10.3.6 COMPARISON BETWEEN TWO TIME SERIES 324
10.4 DEVIATIONS FROM LINEAR STOCHASTIC PROCESSES 326 10.4.1 DEVIATIONS
FROM A GAUSSIAN DISTRIBUTION 326 10.4.2 MORPHOLOGY 327 10.4.3 DEVIATIONS
FROM STOCHASTICITY, LINEARITY, AND STATIONARITY 329 10.4.4 TIME-REVERSAL
INVARIANCE 330 10.4.5 ASYMMETRIC DECAY OF THE AUTOCORRELATION FUNCTION
330 10.5 MATHEMATICAL MODELS OF PARKINSONIAN TREMOR AND ITS CONTROL 332
10.5.1 THE VAN DER POL EQUATION 332 10.5.2 A HOPFIELD-TYPE NEURAL
NETWORK MODEL 333 10.5.3 DYNAMICAL CONTROL OF PARKINSONIAN TREMOR BY
DEEP BRAIN STIMULATION 335 10.6 CONCLUSIONS 337 10.7 COMPUTER EXERCISES:
HUMAN TREMOR DATA ANALYSIS .... 339 10.7.1 EXERCISES: DISPLACEMENT
VERSUS VELOCITY VERSUS ACCELERATION 342 CONTENTS XXV 10.7.2 EXERCISES:
DISTINGUISHING DIFFERENT TYPES OF TREMOR 347 10.8 COMPUTER EXERCISES:
NEURAL NETWORK MODELING OF HUMAN TREMOR 350 A AN INTRODUCTION TO XPP 359
MICHAEL C. MACKEY A.I ODE FILES 359 A.2 STARTING AND QUITTING XPP 361
A.3 TIME SERIES 361 A.4 NUMERICS 361 A.5 GRAPHIC TRICKS 362 A.5.1 AXIS
362 A.5.2 MULTIPLOTTING 362 A.5.3 ERASING 362 A.5.4 PRINTING THE FIGURES
363 A.6 EXAMINING THE NUMBERS 363 A.7 CHANGING THE INITIAL CONDITION 363
A.8 FINDING THE FIXED POINTS AND THEIR STABILITY 364 A.9 DRAWING
NULLCLINES AND DIRECTION FIELD 364 A.10 CHANGING THE PARAMETERS 364 A.LL
AUTO 365 A.11.1 BIFURCATION DIAGRAM 365 A. 11.2 SCROLLING THROUGH THE
POINTS ON THE BIFURCATION DIAGRAM 365 A. 12 SAVING AUTO DIAGRAMS 366 B
AN INTRODUCTION TO MATLAB 367 MICHELE S. TITCOMBE AND CAROLINE HAURIE
B.I STARTING AND QUITTING MATLAB 367 B.2 VECTORS AND MATRICES 368 B.2.1
CREATING MATRICES AND VECTORS 368 B.3 SUPPRESSING OUTPUT TO THE SCREEN
(THE SEMICOLON!) .... 369 B.4 OPERATIONS ON MATRICES 369 B.5 PROGRAMS
(M-FILES) 370 B.5.1 SCRIPT FILES 370 B.5.2 FUNCTION FILES 370 B.6 THE
HELP COMMAND 372 B.7 LOOPS 372 B.8 PLOTTING 373 B.8.1 EXAMPLES 373 B.8.2
CLEARING FIGURES AND OPENING NEW FIGURES .... 375 B.8.3 SYMBOLS AND
COLORS FOR LINES AND POINTS 375 B.9 LOADING DATA 375 B.9.1 EXAMPLES 376
XXVI CONTENTS B.10 SAVING YOUR WORK 376 C TIME SERIES ANALYSIS 377
RODERICK EDWARDS AND MICHELE S. TITCOMBE C.I THE DISTRIBUTION OF DATA
POINTS 377 C.2 LINEAR PROCESSES 379 C.3 FOURIER ANALYSIS 379
BIBLIOGRAPHY 384 INDEX 427
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV019317128 |
callnumber-first | Q - Science |
callnumber-label | QP33 |
callnumber-raw | QP33.6.M36 |
callnumber-search | QP33.6.M36 |
callnumber-sort | QP 233.6 M36 |
callnumber-subject | QP - Physiology |
classification_rvk | WC 7000 |
classification_tum | PHY 820f BIO 105f MAT 587f BIO 210f CHE 802f MED 230f |
ctrlnum | (OCoLC)51818664 (DE-599)BVBBV019317128 |
dewey-full | 612/.001/5118 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612/.001/5118 |
dewey-search | 612/.001/5118 |
dewey-sort | 3612 11 45118 |
dewey-tens | 610 - Medicine and health |
discipline | Physik Biologie Chemie Mathematik Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02238nam a2200601 cb4500</leader><controlfield tag="001">BV019317128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221010 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040609s2003 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441918215</subfield><subfield code="9">978-1-4419-1821-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51818664</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019317128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP33.6.M36</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612/.001/5118</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 820f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92Cxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 587f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 210f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 802f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MED 230f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dynamics in physiology and medicine</subfield><subfield code="c">Anne Beuter .. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 434 S.</subfield><subfield code="b">graph. Darst. : 24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">25 : Mathematical biology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 385 - 426</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fisiologia (modelos matemáticos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matemática aplicada</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Medicina (modelos matemáticos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiology</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiology</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beuter, Anne</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">25 : Mathematical biology</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">25</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012784627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012784627</subfield></datafield></record></collection> |
id | DE-604.BV019317128 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:57:30Z |
institution | BVB |
isbn | 9781441918215 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012784627 |
oclc_num | 51818664 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-526 DE-83 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-526 DE-83 DE-19 DE-BY-UBM |
physical | XXVI, 434 S. graph. Darst. : 24 cm |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
series | Interdisciplinary applied mathematics |
series2 | Interdisciplinary applied mathematics |
spelling | Nonlinear dynamics in physiology and medicine Anne Beuter .. ed. New York [u.a.] Springer 2003 XXVI, 434 S. graph. Darst. : 24 cm txt rdacontent n rdamedia nc rdacarrier Interdisciplinary applied mathematics 25 : Mathematical biology Literaturverz. S. 385 - 426 Fisiologia (modelos matemáticos) larpcal Matemática aplicada larpcal Medicina (modelos matemáticos) larpcal Mathematisches Modell Dynamics Nonlinear Dynamics Nonlinear systems Physiology Mathematical models Physiology methods Nichtlineare Dynamik (DE-588)4126141-0 gnd rswk-swf Physiologie (DE-588)4045981-0 gnd rswk-swf Physiologie (DE-588)4045981-0 s Nichtlineare Dynamik (DE-588)4126141-0 s DE-604 Beuter, Anne Sonstige oth Interdisciplinary applied mathematics 25 : Mathematical biology (DE-604)BV004216726 25 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012784627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nonlinear dynamics in physiology and medicine Interdisciplinary applied mathematics Fisiologia (modelos matemáticos) larpcal Matemática aplicada larpcal Medicina (modelos matemáticos) larpcal Mathematisches Modell Dynamics Nonlinear Dynamics Nonlinear systems Physiology Mathematical models Physiology methods Nichtlineare Dynamik (DE-588)4126141-0 gnd Physiologie (DE-588)4045981-0 gnd |
subject_GND | (DE-588)4126141-0 (DE-588)4045981-0 |
title | Nonlinear dynamics in physiology and medicine |
title_auth | Nonlinear dynamics in physiology and medicine |
title_exact_search | Nonlinear dynamics in physiology and medicine |
title_full | Nonlinear dynamics in physiology and medicine Anne Beuter .. ed. |
title_fullStr | Nonlinear dynamics in physiology and medicine Anne Beuter .. ed. |
title_full_unstemmed | Nonlinear dynamics in physiology and medicine Anne Beuter .. ed. |
title_short | Nonlinear dynamics in physiology and medicine |
title_sort | nonlinear dynamics in physiology and medicine |
topic | Fisiologia (modelos matemáticos) larpcal Matemática aplicada larpcal Medicina (modelos matemáticos) larpcal Mathematisches Modell Dynamics Nonlinear Dynamics Nonlinear systems Physiology Mathematical models Physiology methods Nichtlineare Dynamik (DE-588)4126141-0 gnd Physiologie (DE-588)4045981-0 gnd |
topic_facet | Fisiologia (modelos matemáticos) Matemática aplicada Medicina (modelos matemáticos) Mathematisches Modell Dynamics Nonlinear Dynamics Nonlinear systems Physiology Mathematical models Physiology methods Nichtlineare Dynamik Physiologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012784627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004216726 |
work_keys_str_mv | AT beuteranne nonlineardynamicsinphysiologyandmedicine |