A course in mathematical logic:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
North-Holland Publ.
1977
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 599 S. graph. Darst. |
ISBN: | 0720428440 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV018480258 | ||
003 | DE-604 | ||
005 | 20141128 | ||
007 | t | ||
008 | 040417s1977 d||| |||| 00||| eng d | ||
020 | |a 0720428440 |9 0-7204-2844-0 | ||
035 | |a (OCoLC)611584313 | ||
035 | |a (DE-599)BVBBV018480258 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-188 |a DE-473 | ||
084 | |a CC 2400 |0 (DE-625)17608: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Bell, John Lane |e Verfasser |4 aut | |
245 | 1 | 0 | |a A course in mathematical logic |c by J. L. Bell and M. Machover |
264 | 1 | |a Amsterdam [u.a.] |b North-Holland Publ. |c 1977 | |
300 | |a XVIII, 599 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modelltheorie |0 (DE-588)4114617-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ultraprodukt |0 (DE-588)4127046-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Ultraprodukt |0 (DE-588)4127046-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Modelltheorie |0 (DE-588)4114617-7 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Machover, Moshé |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=011251001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
980 | 4 | |a (DE-12)AK1910530 | |
980 | 4 | |a (DE-12)AK13800812 |
Datensatz im Suchindex
_version_ | 1805069694810456064 |
---|---|
adam_text |
CONTENTS Acknowledgements. IX Interdependence scheme for the chapters. XIV Introduction. XV Recommended reading. XIX Chapter 0. Prerequisites. 1 CHAPTER 1. Beginning mathematical logic. 5 §1 . General considerations . 5 §2 . Structures and formal languages. 9 §3 . Higher-order languages. 14 §4 . Basic syntax. 15 §5 . Notational conventions. 18 §6 . Propositional semantics. 20 §7 . Propositional tableaux. 25 §8 . The Elimination Theorem for propositionaltableaux. 31 §9 . Completeness of propositional
tableaux. 33 §10 . The propositional calculus. 34 §11 . The propositional calculus and tableaux. 40 §12 . Weak completeness of the propositionalcalculus. 43 §13 . Strong completeness of the propositionalcalculus. 44 §14 . Propositional logic based on ~1 and Λ . 46 §15 . Propositional logic based on “,— , A andV. 47 §16 . Historical and bibliographical remarks . 48 ■Chapter 2. First-order logic. 49 §1 . First-order semantics. 49 §2 . Freedom and bondage. 54 §3 . Substitution. 57 §4 . First-order tableaux.67 §5 . Some “book-keeping” lemmas. 72 §6 . The Elimination Theorem for first-order tableaux. 79 §7 . Hintikka
sets. 83 §8 . Completeness of first-order tableaux. 88 §9 . Prenex and Skolem forms . . 93 ■,§10. Elimination of function symbols. 97
CONTENTS XI §11 . Elimination of equality.101 §12 . Relativization. 102 §13 . Virtual terms.104 §14 . Historical and bibliographical remarks. 107 Chapter 3. First-order logic (Continued). 108 §1 . The first-order predicate calculus. 108 §2 . The first-order predicate calculus and tableaux. 115 §3 . Completeness of the first-order predicate calculus. 117 §4 . First-order logic based on 3. 122 §5 . What have we achieved?. 122 §6 . Historical and bibliographical remarks. 124 Chapter 4. Boolean Algebras. 125 §1 §2 §3 §4 §5 §6 §7 §8 . . . . . . . . Lattices . 125 Boolean
algebras. 129 Filters and homomorphisms. 133 The Stone Representation Theorem. 141 Atoms. 150 Duality for homomorphisms and continuous mappings. 153 The Rasiowa-Sikorski Theorem. 157 Historical and bibliographical remarks.159 Chapter 5. Model theory. 161 §1 . Basic ideas of model theory. 161 §2 . The Löwenheim-Skolem Theorems.168 §3 . Ultraproducts. 174 §4 . Completeness and categoricity. 184 §5 . Lindenbaum algebras. 191 §6 . Element types and Ro-categoricity. 203 §7 . Indiscernibles and models with
automorphisms. 214 §8 . Historical and bibliographical remarks. 224 Chapter 6. Recursion theory. 226 §1 . Basic notation and terminology. 226 §2 . Algorithmic functions and functionals. 230 §3 . The computer URIM.232 §4 . Computable functionals and functions. 237 §5 . Recursive functionals and functions. 239 §6 . A stockpile of examples. 247 §7 . Church’s Thesis. 257 §8 . Recursiveness of computable functionals.259 §9 . Functionals with several sequence arguments. 265 §10 . Fundamental theorems. 266 §11 . Recursively enumerable sets.277 §12 . Diophantine
relations. 284 §13 . The Fibonacci sequence. 288 §14 . The power function.296
χπ CONTENTS §15 §16 §17 . Bounded universal quantification. 305 . The MRDP Theorem and Hilbert’sTenth Problem. 311 . Historical and bibliographical remarks. 314 Chapter 7. Logic — Limitative results. 316 §1 . General notation and terminology.316 §2 . Nonstandard models of Ω. 318 §3 . Arithmeticity . 324 §4 . Tarski’s Theorem. 327 §5 . Axiomatic theories. 332 §6 . Baby arithmetic. 334 §7 . Junior arithmetic. 336 §8 . A finitely axiomatized theory. 340 §9 . First-order Peano arithmetic.342 §10 .
Undecidability. 347 §11 . Incompleteness. 353 §12 . Historical and bibliographical remarks. 359 Chapter 8. Recursion theory (Continued). 361 §1 . The arithmetical hierarchy.361 §2 . A result concerning 7^. 369 §3 . Encoded theories. 370 §4 . Inseparable pairs of sets. 372 §5 . Productive and creative sets; reducibility. 376 §6 . One-one reducibility; recursive isomorphism. 384 §7 . Turing degrees. 388 §8 . Post’s problem and its solution. 392 §9 . Historical and bibliographical remarks. 398 Chapter 9. §1 §2 §3 §4 §5 §6 §7 §8 §9 §10 §11 §12 §13 §14 INTUITIONISTIC first-order
logic. 400 . Preliminary discussion. 400 . Philosophical remark. 403 . Constructive meaning of sentences. 403 . Constructive interpretations. 404 . Intuitionistic tableaux. 408 . Kripke’s semantics. 416 . The Elimination Theorem for intuitionistic tableaux. 422 . Intuitionistic propositional calculus.433 . Intuitionistic predicate calculus. 434 . Completeness . 438 . Translations from classical to intuitionistic logic.442 . The Interpolation Theorem. 445 . Some results in classical logic. 452 . Historical and bibliographical
remarks.457 Chapter 10. Axiomatic set theory.459 §1 . Basic developments.459 §2 . Ordinals . 468
CONTENTS XIII The Axiom of Regularity. 477 Cardinality and the Axiom of Choice. 487 Reflection Principles . . 491 The formalization of satisfaction. 497 Absoluteness. 502 Constructible sets.509 The consistency of AC and GCH. 516 Problems. 522 Historical and bibliographical remarks. 529 Chapter 11. Nonstandard analysis.531 §1 . Enlargements. 532 §2 . Zermelo structures and theirenlargements. 536 §3 . Filters and monads.543 §4 . Topology. 553
§5 . Topological groups. 561 §6 . The real numbers. 566 §7 . A methodological discussion. 572 §8 . Historical and bibliographicalremarks.573 §3 . §4 . §5 . §6 . §7 . §8 . §9 . §10 . §11 . Bibliography. 576 General index. 584 Index of symbols. 595 |
any_adam_object | 1 |
author | Bell, John Lane |
author_facet | Bell, John Lane |
author_role | aut |
author_sort | Bell, John Lane |
author_variant | j l b jl jlb |
building | Verbundindex |
bvnumber | BV018480258 |
classification_rvk | CC 2400 SK 130 |
ctrlnum | (OCoLC)611584313 (DE-599)BVBBV018480258 |
discipline | Mathematik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV018480258</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141128</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040417s1977 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0720428440</subfield><subfield code="9">0-7204-2844-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)611584313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV018480258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2400</subfield><subfield code="0">(DE-625)17608:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bell, John Lane</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course in mathematical logic</subfield><subfield code="c">by J. L. Bell and M. Machover</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North-Holland Publ.</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 599 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ultraprodukt</subfield><subfield code="0">(DE-588)4127046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ultraprodukt</subfield><subfield code="0">(DE-588)4127046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Machover, Moshé</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=011251001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK1910530</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK13800812</subfield></datafield></record></collection> |
id | DE-604.BV018480258 |
illustrated | Illustrated |
indexdate | 2024-07-20T04:10:07Z |
institution | BVB |
isbn | 0720428440 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-011251001 |
oclc_num | 611584313 |
open_access_boolean | |
owner | DE-12 DE-188 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-188 DE-473 DE-BY-UBG |
physical | XVIII, 599 S. graph. Darst. |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | North-Holland Publ. |
record_format | marc |
spelling | Bell, John Lane Verfasser aut A course in mathematical logic by J. L. Bell and M. Machover Amsterdam [u.a.] North-Holland Publ. 1977 XVIII, 599 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Modelltheorie (DE-588)4114617-7 gnd rswk-swf Ultraprodukt (DE-588)4127046-0 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s 1\p DE-604 Ultraprodukt (DE-588)4127046-0 s DE-604 Modelltheorie (DE-588)4114617-7 s Machover, Moshé Sonstige oth Digitalisierung UB Bamberg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=011251001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bell, John Lane A course in mathematical logic Mathematische Logik (DE-588)4037951-6 gnd Modelltheorie (DE-588)4114617-7 gnd Ultraprodukt (DE-588)4127046-0 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4114617-7 (DE-588)4127046-0 |
title | A course in mathematical logic |
title_auth | A course in mathematical logic |
title_exact_search | A course in mathematical logic |
title_full | A course in mathematical logic by J. L. Bell and M. Machover |
title_fullStr | A course in mathematical logic by J. L. Bell and M. Machover |
title_full_unstemmed | A course in mathematical logic by J. L. Bell and M. Machover |
title_short | A course in mathematical logic |
title_sort | a course in mathematical logic |
topic | Mathematische Logik (DE-588)4037951-6 gnd Modelltheorie (DE-588)4114617-7 gnd Ultraprodukt (DE-588)4127046-0 gnd |
topic_facet | Mathematische Logik Modelltheorie Ultraprodukt |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=011251001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT belljohnlane acourseinmathematicallogic AT machovermoshe acourseinmathematicallogic |