Mathematical population genetics: 1 Theoretical introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2004
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Interdisciplinary applied mathematics
27 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 417 S. |
ISBN: | 0387201912 9780387201917 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV017930273 | ||
003 | DE-604 | ||
005 | 20070820 | ||
007 | t | ||
008 | 040315s2004 |||| 00||| eng d | ||
020 | |a 0387201912 |9 0-387-20191-2 | ||
020 | |a 9780387201917 |9 978-0-387-20191-7 | ||
035 | |a (OCoLC)440678572 | ||
035 | |a (DE-599)BVBBV017930273 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-703 |a DE-19 |a DE-29T |a DE-83 | ||
080 | |a 51-7 | ||
084 | |a WG 8200 |0 (DE-625)148620: |2 rvk | ||
100 | 1 | |a Ewens, Warren J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical population genetics |n 1 |p Theoretical introduction |c Warren J. Ewens |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2004 | |
300 | |a XIX, 417 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary applied mathematics |v 27 | |
490 | 0 | |a Interdisciplinary applied mathematics |v ... | |
773 | 0 | 8 | |w (DE-604)BV017930269 |g 1 |
830 | 0 | |a Interdisciplinary applied mathematics |v 27 |w (DE-604)BV004216726 |9 27 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010749305&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010749305 |
Datensatz im Suchindex
_version_ | 1804130582018392064 |
---|---|
adam_text | WARREN J. EWENS MATHEMATICAL POPULATION GENETICS I. THEORETICAL
INTRODUCTION SECOND EDITION 4Y SPRINGER CONTENTS PREFACE VII
INTRODUCTION XVII 1 HISTORICAL BACKGROUND 1 1.1 BIOMETRICIANS,
SALTATIONISTS AND MENDELIANS 1 1.2 THE HARDY-WEINBERG LAW 3 1.3 THE
CORRELATION BETWEEN RELATIVES 6 1.4 EVOLUTION 11 1.4.1 THE DETERMINISTIC
THEORY 11 1.4.2 NON-RANDOM-MATING POPULATIONS 18 1.4.3 THE STOCHASTIC
THEORY 20 1.5 EVOLVED GENETIC PHENOMENA . 31 1.6 MODELLING 35 1.7
OVERALL EVOLUTIONARY THEORIES 38 2 TECHNICALITIES AND GENERALIZATIONS 43
2.1 INTRODUCTION 43 2.2 RANDOM UNION OF GAMETES 44 2.3 DIOECIOUS
POPULATIONS 44 2.4 MULTIPLE ALLELES 49 2.5 FREQUENCY-DEPENDENT
SELECTION 54 2.6 FERTILITY SELECTION 54 2.7 CONTINUOUS-TIME MODELS 57
XII CONTENTS 2.8 NON-RANDOM-MATING POPULATIONS 62 2.9 THE FUNDAMENTAL
THEOREM OF NATURAL SELECTION 64 2.10 TWO LOCI 67 2.11 GENETIC LOADS 78
2.12 FINITE MARKOV CHAINS 86 3 DISCRETE STOCHASTIC MODELS 92 3.1
INTRODUCTION 92 3.2 WRIGHT-FISHER MODEL: TWO ALLELES 92 3.3 THE CANNINGS
(EXCHANGEABLE) MODEL: TWO ALLELES . . . . 99 3.4 MORAN MODELS: TWO
ALLELES 104 3.5 K-ALLELE WRIGHT-FISHER MODELS 109 3.6 INFINITELY MANY
ALLELES MODELS ILL 3.6.1 INTRODUCTION ILL 3.6.2 THE WRIGHT-FISHER
INFINITELY MANY ALLELES MODEL 111 3.6.3 THE CANNINGS INFINITELY MANY
ALLELES MODEL ... 117 3.6.4 THE MORAN INFINITELY MANY ALLELES MODEL . .
. . 117 3.7 THE EFFECTIVE POPULATION SIZE 119 3.8 FREQUENCY-DEPENDENT
SELECTION 129 3.9 TWO LOCI 129 4 DIFFUSION THEORY 136 4.1 INTRODUCTION .
. . 136 4.2 THE FORWARD AND BACKWARD KOLMOGOROV EQUATIONS . . . 137 4.3
FIXATION PROBABILITIES 139 4.4 ABSORPTION TIME PROPERTIES 140 4.5 THE
STATIONARY DISTRIBUTION 145 4.6 CONDITIONAL PROCESSES 146 4.7 DIFFUSION
THEORY 148 4.8 MULTI-DIMENSIONAL PROCESSES 151 4.9 TIME REVERSIBILITY
153 4.10 EXPECTATIONS OF FUNCTIONS OF DIFFUSION VARIABLES 153 5
APPLICATIONS OF DIFFUSION THEORY 156 5.1 INTRODUCTION 156 5.2 NO
SELECTION OR MUTATION 158 5.3 SELECTION 165 5.4 SELECTION: ABSORPTION
TIME PROPERTIES 167 5.5 ONE-WAY MUTATION 171 5.6 TWO-WAY MUTATION 174
5.7 DIFFUSION APPROXIMATIONS AND BOUNDARY CONDITIONS ... 176 5.8 RANDOM
ENVIRONMENTS 181 5.9 TIME-REVERSAL AND AGE PROPERTIES 188 5.10
MULTI-ALLELE DIFFUSION PROCESSES 192 CONTENTS XIII 6 TWO LOCI 201 6.1
INTRODUCTION 201 6.2 EVOLUTIONARY PROPERTIES OF MEAN FITNESS 202 6.3
EQUILIBRIUM POINTS 208 6.4 SPECIAL MODELS 209 6.5 MODIFIER THEORY 221
6.6 TWO-LOCUS DIFFUSION PROCESSES 227 6.7 ASSOCIATIVE OVERDOMINANCE AND
HITCHHIKING 230 6.8 THE EVOLUTIONARY ADVANTAGE OF RECOMBINATION 235 6.9
SUMMARY 239 7 MANY LOCI 241 7.1 INTRODUCTION 241 7.2 NOTATION 242 7.3
THE RANDOM MATING CASE 243 7.3.1 LINKAGE DISEQUILIBRIUM, MEANS AND
VARIANCES . . 243 7.3.2 RECURRENCE RELATIONS FOR GAMETIC FREQUENCIES . .
245 7.3.3 COMPONENTS OF VARIANCE 246 7.3.4 PARTICULAR MODELS 249 7.4
NON-RANDOM MATING 254 7.4.1 INTRODUCTION 254 7.4.2 NOTATION AND THEORY
255 7.4.3 MARGINAL FITNESSES AND AVERAGE EFFECTS 256 7.4.4 IMPLICATIONS
258 7.4.5 THE FUNDAMENTAL THEOREM OF NATURAL SELECTION . 259 7.4.6
OPTIMALITY PRINCIPLES 261 7.5 THE CORRELATION BETWEEN RELATIVES 266 7.6
SUMMARY 274 8 FURTHER CONSIDERATIONS 276 8.1 INTRODUCTION 276 8.2 WHAT
IS FITNESS? 276 8.3 SEX RATIO 277 8.4 GEOGRAPHICAL STRUCTURE 278 8.5 AGE
STRUCTURE 282 8.6 ECOLOGICAL CONSIDERATIONS 283 8.7 SOCIOBIOLOGY , 285 9
MOLECULAR POPULATION GENETICS: INTRODUCTION 288 9.1 INTRODUCTION 288 9.2
TECHNICAL COMMENTS 290 9.3 INFINITELY MANY ALLELES MODELS: POPULATION
PROPERTIES . . 292 9.3.1 THE WRIGHT-FISHER MODEL 292 9.3.2 THE MORAN
MODEL 294 9.4 INFINITELY MANY SITES MODELS: POPULATION PROPERTIES . . .
297 XIV CONTENTS 9.4.1 INTRODUCTION 297 9.4.2 THE WRIGHT-FISHER MODEL
298 9.4.3 THE MORAN MODEL . 300 9.5 SAMPLE PROPERTIES OF INFINITELY MANY
ALLELES MODELS ... 301 9.5.1 INTRODUCTION 301 9.5.2 THE WRIGHT-FISHER
MODEL 301 9.5.3 THE MORAN MODEL 306 9.6 SAMPLE PROPERTIES OF INFINITELY
MANY SITES MODELS . . . . 308 9.6.1 INTRODUCTION 308 9.6.2 THE
WRIGHT-FISHER MODEL 308 9.6.3 THE MORAN MODEL 314 9.7 RELATION BETWEEN
INFINITELY MANY ALLELES AND INFINITELY MANY SITES MODELS 316 9.8 GENETIC
VARIATION WITHIN AND BETWEEN POPULATIONS ... 319 9.9 AGE-ORDERED
ALLELES: FREQUENCIES AND AGES 320 10 LOOKING BACKWARD IN TIME: THE
COALESCENT 328 10.1 INTRODUCTION 328 10.2 COMPETING POISSON AND
GEOMETRIC PROCESSES 329 10.3 THE COALESCENT PROCESS 330 10.4 THE
COALESCENT AND ITS RELATION TO EVOLUTIONARY GENETIC MODELS 331 10.5
COALESCENT CALCULATIONS: WRIGHT-FISHER MODELS 333 10.6 COALESCENT
CALCULATIONS: EXACT MORAN MODEL RESULTS . . 338 10.7 GENERAL COMMENTS
341 10.8 THE COALESCENT AND HUMAN GENETICS 342 11 LOOKING BACKWARD:
TESTING THE NEUTRAL THEORY 346 11.1 INTRODUCTION 346 11.2 TESTING IN THE
INFINITELY MANY ALLELES MODELS 349 11.2.1 INTRODUCTION 349 11.2.2 THE
EWENS AND THE WATTERSON TESTS 349 11.2.3 PROCEDURES BASED ON THE
CONDITIONAL SAMPLE FRE- QUENCY SPECTRUM 353 11.2.4 AGE-DEPENDENT TESTS
354 11.3 TESTING IN THE INFINITELY MANY SITES MODELS 355 11.3.1
INTRODUCTION 355 11.3.2 ESTIMATORS OF 0 356 11.3.3 THE TAJIMA TEST 358
11.3.4 OTHER TAJIMA-LIKE TESTING PROCEDURES 361 11.3.5 TESTING FOR THE
SIGNATURE OF A SELECTIVE SWEEP . . 362 11.3.6 COMBINING INFINITELY MANY
ALLELES AND INFINITELY MANY SITES APPROACHES 364 11.3.7 DATA FROM
SEVERAL UNLINKED LOCI . ,365 11.3.8 DATA FROM UNLINKED SITES 368
CONTENTS XV 11.3.9 TESTS BASED ON HISTORICAL FEATURES 369 12 LOOKING
BACKWARD IN TIME: POPULATION AND SPECIES COMPARISONS 370 12.1
INTRODUCTION 370 12.1.1 THE REVERSIBILITY CRITERION 372 12.2 VARIOUS
EVOLUTIONARY MODELS 373 12.2.1 THE JUKES-CANTOR MODEL 373 12.2.2 THE
KIMURA MODEL AND ITS GENERALIZATIONS . . . . 374 12.2.3 THE FELSENSTEIN
MODELS 375 12.3 SOME IMPLICATIONS 377 12.3.1 INTRODUCTION 377 12.3.2 THE
JUKES-CANTOR MODEL 377 12.3.3 THE KIMURA MODEL . 380 12.4 STATISTICAL
PROCEDURES 381 APPENDIX A: EIGENVALUE CALCULATIONS 384 APPENDIX B:
SIGNIFICANCE LEVELS FOR F 385 APPENDIX C: MEANS AND VARIANCES OF F 386
REFERENCES 387 AUTHOR INDEX 409 SUBJECT INDEX 413
|
any_adam_object | 1 |
author | Ewens, Warren J. |
author_facet | Ewens, Warren J. |
author_role | aut |
author_sort | Ewens, Warren J. |
author_variant | w j e wj wje |
building | Verbundindex |
bvnumber | BV017930273 |
classification_rvk | WG 8200 |
ctrlnum | (OCoLC)440678572 (DE-599)BVBBV017930273 |
discipline | Biologie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01382nam a2200361 cc4500</leader><controlfield tag="001">BV017930273</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070820 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040315s2004 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387201912</subfield><subfield code="9">0-387-20191-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387201917</subfield><subfield code="9">978-0-387-20191-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)440678572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017930273</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">51-7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 8200</subfield><subfield code="0">(DE-625)148620:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ewens, Warren J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical population genetics</subfield><subfield code="n">1</subfield><subfield code="p">Theoretical introduction</subfield><subfield code="c">Warren J. Ewens</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 417 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">27</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">...</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV017930269</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">27</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010749305&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010749305</subfield></datafield></record></collection> |
id | DE-604.BV017930273 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:23:19Z |
institution | BVB |
isbn | 0387201912 9780387201917 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010749305 |
oclc_num | 440678572 |
open_access_boolean | |
owner | DE-20 DE-703 DE-19 DE-BY-UBM DE-29T DE-83 |
owner_facet | DE-20 DE-703 DE-19 DE-BY-UBM DE-29T DE-83 |
physical | XIX, 417 S. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Interdisciplinary applied mathematics |
series2 | Interdisciplinary applied mathematics |
spelling | Ewens, Warren J. Verfasser aut Mathematical population genetics 1 Theoretical introduction Warren J. Ewens 2. ed. New York, NY Springer 2004 XIX, 417 S. txt rdacontent n rdamedia nc rdacarrier Interdisciplinary applied mathematics 27 Interdisciplinary applied mathematics ... (DE-604)BV017930269 1 Interdisciplinary applied mathematics 27 (DE-604)BV004216726 27 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010749305&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ewens, Warren J. Mathematical population genetics Interdisciplinary applied mathematics |
title | Mathematical population genetics |
title_auth | Mathematical population genetics |
title_exact_search | Mathematical population genetics |
title_full | Mathematical population genetics 1 Theoretical introduction Warren J. Ewens |
title_fullStr | Mathematical population genetics 1 Theoretical introduction Warren J. Ewens |
title_full_unstemmed | Mathematical population genetics 1 Theoretical introduction Warren J. Ewens |
title_short | Mathematical population genetics |
title_sort | mathematical population genetics theoretical introduction |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010749305&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV017930269 (DE-604)BV004216726 |
work_keys_str_mv | AT ewenswarrenj mathematicalpopulationgenetics1 |