Introduction to physical modeling with Modelica:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston, Mass. u.a.
Kluwer
2004
|
Ausgabe: | 2. print. |
Schriftenreihe: | The Kluwer international series in engineering and computer science
615 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 344 S. graph. Darst. CD-ROM (12 cm) |
ISBN: | 0792373677 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017905956 | ||
003 | DE-604 | ||
005 | 20170515 | ||
007 | t | ||
008 | 040308s2004 d||| |||| 00||| eng d | ||
020 | |a 0792373677 |9 0-7923-7367-7 | ||
035 | |a (OCoLC)249477126 | ||
035 | |a (DE-599)BVBBV017905956 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-M347 |a DE-83 | ||
050 | 0 | |a QA76.9.C65 | |
082 | 0 | |a 005/.35133 | |
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 341 |0 (DE-625)143666: |2 rvk | ||
084 | |a PHY 016f |2 stub | ||
084 | |a 11 |2 ssgn | ||
084 | |a DAT 306f |2 stub | ||
084 | |a MTA 009f |2 stub | ||
100 | 1 | |a Tiller, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to physical modeling with Modelica |c Michael Tiller |
250 | |a 2. print. | ||
264 | 1 | |a Boston, Mass. u.a. |b Kluwer |c 2004 | |
300 | |a XXII, 344 S. |b graph. Darst. |e CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a The Kluwer international series in engineering and computer science |v 615 | |
650 | 0 | 7 | |a Modelica |0 (DE-588)4657257-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Objektorientierte Analyse |0 (DE-588)4504809-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Modelica |0 (DE-588)4657257-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Objektorientierte Analyse |0 (DE-588)4504809-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
830 | 0 | |a The Kluwer international series in engineering and computer science |v 615 |w (DE-604)BV023545171 |9 615 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010740602&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010740602 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804130569956622336 |
---|---|
adam_text | Titel: Introduction to physical modeling with Modelica
Autor: Tiller, Michael
Jahr: 2004
Contents
List of Figures ix
List of Tables xiii
Preface xix
Acknowledgements xxi
Part I The Modelica Language
1 INTRODUCTION 3
1.1 What is Modelica?....................... 3
1.2 What can Modelica be used for?................ 6
1.3 Modeling formalisms...................... 10
1.4 Modelica Standard Library................... 13
1.5 Basic vocabulary........................ 13
1.6 Summary............................ 15
2 DIFFERENTIAL EQUATIONS 17
2.1 Concepts............................ 17
2.2 Differential equations..................... 17
2.3 Physical types......................... 21
2.4 Documenting models...................... 24
2.5 Language fundamentals.................... 28
2.6 Problems............................ 36
3 BUILDING AND CONNECTING COMPONENTS 39
3.1 Concepts............................ 39
3.2 Connectors........................... 39
3.3 Creating connectors and components ............. 40
3.4 Defining a block........................ 49
3.5 Existing rotational components ................ 56
3.6 Language fundamentals .................... 61
vi INTRODUCTION TO PHYSICAL MODELING WITH MODELICA
3.7 Summary............................ 65
3.8 Problems............................ 66
4 ENABLING REUSE 69
4.1 Concepts ............................ 69
4.2 Exploiting commonality.................... 70
4.3 Reusable building blocks.................... 71
4.4 Allowing replaceable components............... 75
4.5 Other replaceable entities ................... 79
4.6 Limiting flexibility....................... 82
4.7 Other considerations...................... 84
4.8 Language fundamentals .................... 85
4.9 Problems ............................ 88
5 FUNCTIONS 91
5.1 Concepts ............................ 91
5.2 Introduction to functions.................... 92
5.3 An interpolation function ................... 94
5.4 Multiple return values ..................... 96
5.5 Passing records as arguments ................. 97
5.6 Using external subroutines................... 100
5.7 Language fundamentals .................... 102
5.8 Problems ............................ 110
6 USING ARRAYS 113
6.1 Concepts ............................ 113
6.2 Planetary motion: Arrays of components ........... 113
6.3 Simple ID heat transfer: Arrays of variables ......... 120
6.4 Using arrays with chemical systems.............. 132
6.5 Language fundamentals .................... 143
6.6 Problems ............................ 152
7 HYBRID MODELS 155
7.1 Concepts............................ 155
7.2 Modeling digital circuits.................... 155
7.3 Bouncing ball.......................... 162
7.4 Sensor modeling ........................ 166
7.5 Language fundamentals .................... 178
7.6 Problems............................ 186
8 EXPLORING NONLINEAR BEHAVIOR 189
8.1 Concepts............................ 189
8.2 An ideal diode ......................... 189
8.3 Backlash............................ 193
8.4 Thermal properties....................... 199
Contents vii
8.5 Hodgkin-Huxley nerve cell models .............. 203
8.6 Language fundamentals .................... 206
8.7 Problems............................ 210
9 MISCELLANEOUS 213
9.1 Lookup rules.......................... 213
9.2 Annotations........................... 225
Part II Effective Modelica
10 MULTI-DOMAIN MODELING 231
10.1 Concepts ............................ 231
10.2 Conveyor system........................ 231
10.3 Residential heating system................... 236
10.4 Automotive library....................... 244
10.5 Summary............................ 252
10.6 Problems............................ 253
11 BLOCK DIAGRAMS VS. ACAUSAL MODELING 255
11.1 Objective............................ 255
11.2 Block diagrams......................... 256
11.3 Acausal approach........................ 262
11.4 Summary............................ 263
11.5 Problems............................ 264
12 BUILDING LIBRARIES 265
12.1 Objective............................ 265
12.2 Classification.......................... 265
12.3 Structure ............................ 266
12.4 Documentation......................... 271
12.5 Maximizing reusability..................... 272
12.6 Maximizing robustness..................... 274
12.7 Storage of Modelica source code ............... 276
12.8 Conclusion........................... 278
13 INITIAL CONDITIONS 279
13.1 Objective............................ 279
13.2 Mathematical formulation................... 279
13.3 Using attributes......................... 282
13.4 Start of simulation ....................... 283
13.5 Initialization based on analysis type.............. 284
13.6 Conclusion........................... 286
14 EFFICIENCY 287
14.1 Objective........................... - 287
viii INTRODUCTION TO PHYSICAL MODEUNG WITH MODELICA
14.2 Use equations.......................... 287
14.3 Avoid unnecessary events ................... 288
14.4 Time scales........................... 288
14.5 Providing Jacobians for functions ............... 289
14.6 Choosing the proper integration routine............ 292
14.7 Tolerances ........................... 292
14.8 Variable elimination ...................... 293
14.9 Conclusion........................... 294
Appendices 295
A- History of Modelica 295
A.l Contributors to the Modelica language ............ 299
A.2 Contributors to the Modelica Standard Library ........ 300
B- Modelica Syntax 301
C- Modelica Standard Library: Connectors 309
C.l Electrical (Analog)....................... 309
C.2 Block diagrams......................... 310
C.3 Translational motion...................... 312
C.4 Rotational motion ....................... 312
D- Modelica Standard Library: Common Units 315
D.l Time and space......................... 315
D.2 Periodic phenomenon ..................... 315
D.3 Mechanics........................... 316
D.4 Thermodynamics........................ 317
D.5 Electricity............................ 318
D.6 Physical chemistry....................... 318
E- Modelica Standard Library: Constants 321
F- Modelica Standard Library: Math Functions 323
F.l Geometric functions ...................... 323
F.2 Inverse geometric functions .................. 323
F.3 Hyperbolic geometric functions................ 323
F.4 Exponential functions ..................... 323
Glossary 324
References 331
Index 337
List of Figures
1.1 A 0-100 kilometer per hour test................ 6
1.2 Taking a look at what is under the hood............ 7
1.3 Looking inside the engine................... 8
1.4 Looking inside an individual engine cylinder......... 9
1.5 Simulation results from a sample race............. 10
1.6 PI Controller.......................... 11
1.7 RLC circuit schematic..................... 12
2.1 A simple pendulum...................... 18
2.2 Solution for 0(4) given L=2,0{O) = 0.1 and w(0) = 0. . . . 20
2.3 Linear and non-linear solutions for 8(t) given L=2,
0(0) = 2.3 andw(0) = 0................... 21
2.4 An RLC circuit. ....................... 21
2.5 Voltage response of model RLC................ 24
2.6 Two hydraulic tanks filled with liquid............. 25
2.7 Solution with initial conditions H1=0 and H2=2....... 26
3.1 Another RLC circuit...................... 40
3.2 A free body diagram of a Resistor. .......... 41
3.3 Schematic for RLC4 model in Example 3.8.......... 48
3.4 PI controller with plant model................. 49
3.5 Control system model using components from Model ica. -
Blocks............................ 56
3.6 A single pendulum system................... 59
3.7 A system with multiple pendulums.............. 60
4.1 The diagram view of PICoritroller............ 72
4.2 PI Controller model icon................. 73
4.3 PI Control lerAndMotor model............. 74
4.4 Side by side comparison of controllers. ........... 79
4.5 Schematic for Example 4.10.,................ 81
5.1 Output after simulating TestPiecewise for 10 seconds. 96
INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA
5.2 Simulation results for TestComplexWave......... 99
5.3 Simulation results for TestComplexWave2........ 100
6.1 Several bodies mutually attracted by gravitational forces. . . 114
6.2 Simulating the motion of the Earth and the Moon for
approximately 1 year...................... 119
6.3 Heat transfer in a one-dimensional rod............ 121
6.4 Schematic for Conduct ingRod model in Example 6.14. . 126
6.5 Solution for HTProbleml model in Example 6.15..... 128
6.6 Schematic for Conduct ingRodWithConvection
shown in Example 6.17.................... 128
6.7 Simulation results for HTProblem2 model shown in
Example 6.18......................... 130
6.8 Comparison of steady-state solutions to HTProbleml. . . 131
6.9 Visualization of the Oregonator reaction........... 134
6.10 Oscillatory response from the Oregonator reaction...... 143
7.1 Diagram for LogicCircuit model in Example 7.4. ... 158
7.2 Output signals from LogicCircuit model shown in
Example 7.4.......................... 158
7.3 Diagram for LogicCircuitWithLagmodel shown
in Example 7.6......................... 161
7.4 Output signals from LogicCircuitwithLag, c = g. . . 161
7.5 Output signals from LogicCircuitWithLag,c = |. . . 161
7.6 Behavior of model BouncingBall2............ 164
7.7 Our sensor benchmark system................. 167
7.8 Performance of low (k= 10) and high (k=l 00) gain con-
trollers with ideal sensors................... 168
7.9 Comparison of SampleHoldSensor with ideal case. . . 170
7.10 Comparison of Quant izedSensor with ideal case. . . . 173
7.11 Comparison of PeriodSensor with ideal case....... 175
7.12 Comparison of Count ingSensor with ideal case..... 178
7.13 Circuit to model inertial delay................. 187
8.1 Current-voltage characteristics of an ideal diode. ...... 190
8.2 Current-voltage characteristics of an ideal diode plotted
parametrically........................ . 191
8.3 Schematic of an AC/DC power supply. ........... 192
8.4 Voltage response of an AC/DC power supply......... 192
8.5 Force-displacement characteristics for a backlash...... 193
8.6 Backlash schematic with two inertias............. 196
8.7 Backlash schematic with three inertias............ 196
8.8 Comparison of the two backlash models for the cases
shown in Figures 8.6 and 8.7. ................ 197
8.9 Plot ofit(T) from Equation (8.9)............... 199
List of Figures xi
8.10 Temperature distributions in SolidifyingRod for
linear and nonlinear property models............. 203
8.11 Nerve cell segment schematic................. 204
8.12 Dynamic response of the nerve cell.............. 206
8.13 Current-voltage characteristics of an ideal Zener diode. ... 210
9.1 Sample package hierarchy................... 215
9.2 Trace ofp3 in Example 9.4.................. 224
9.3 Schematic for pendulum system................ 227
9.4 Dymola rendering of HTML documentation for the
TwoTanks model shown in Example 9.6.......... 228
10.1 Schematic for the conveyor belt system............ 232
10.2 Schematic for the electric motor................ 233
10.3 Schematic for the conveyor controller............. 234
10.4 Schematic for the factory. .................. 234
10.5 Comparison of desired vs. actual factory behavior...... 235
10.6 Motor voltage required.................... 235
10.7 Schematic for the House model............... 236
10.8 Schematic for the Furnace model.............. 238
10.9 Schematic for the MechanicalThermostat model. . . 240
10.10 Schematic for the DigitalThermos tat model...... 241
10.11 Schematic for the ThermostatSystem model....... 243
10.12 Indoor and Outdoor temperature............... 243
10.13 Packages nested inside the SimpleCar package...... 244
10.14 Components of the Engine package............. 246
10.15 Looking inside an individual engine cylinder......... 248
10.16 Looking inside a 4 cylinder engine.............. 248
10.17 A simplistic five speed transmission.............. 249
10.18 Contents of the Chassis package.............. 250
10.19 Creating a vehicle model................... 250
10.20 Top level model for dynamometer testing........... 252
11.1 Grounded planetary gear with two inertias attached..... 256
11.2 Planetary gear driven by the sun gear............. 258
11.3 Block diagram of planetary gear system........... 260
11.4 Planetary gear with torsional mount.............. 262
12.1 Possible file and directory structure for the Chemist re-
package............................ 277
14.1 Comparison between a non-stiff (top) and stiff (bottom)
system............................. 289
14.2 Comparison of simulation time and results for the sys-
tems in Figure 14.1...................... 290
List of Tables
1.1 Through and across variables from various domains..... 12
5.1 Example analysis types.................... 105
5.2 Modelica types o C types................... 108
5.3 Modelica types 4- FORTRAN77 types............ 109
6.1 Built-in functions for arrays in Modelica........... 153
6.2 Solar system data....................... 154
7.1 Discrete behavior truth table.................. 155
List of Examples
2.1 Model of a simple pendulum................... 19
2.2 Model of a pendulum without linear assumption........ 20
2.3 Model for an RLC circuit.................... 23
2.4 Hydraulic system of two tanks.................. 27
3.1 Another RLC circuit....................... 41
3.2 A model for an electrical resistor................. 43
3.3 A model for an electrical capacitor................ 44
3.4 A model for an electrical inductor................ 44
3.5 A model for a step voltage.................... 45
3.6 A model for electrical ground.................. 45
3.7 Another model for our RLC circuit in Figure 3.1........ 46
3.8 RLC circuit using MSL..................... 48
3.9 A simple control system..................... 50
3.10 Connector used for a scalar signal................ 50
3.11 A sinusoidal signal generator................... 51
3.12 A block which sums two signals................. 51
3.13 An integrator block........................ 52
3.14 A first order transfer function.................. 52
3.15 A multiplier block........................ 53
3.16 A component based control system model for the system
shown in Figure 3.4....................... 53
3.17 Controller and mechanism.................... 56
3.18 One-dimensional rotational connector.............. 57
3.19 A rotational pendulum model.................. 58
3.20 A frictionless bearing....................... 59
3.21 A simple pendulum system.................... 59
3.22 A system with multiple pendulums............... 60
4.1 Defining a common base model for one port electrical
components............................ 71
4.2 Model for Resistor using OnePort............. 71
4.3 Source code for the PI controller model in Figure 4.1...... 73
4.4 A PI controller controlling a motor................ 74
4.5 A generic controller interface.................. 76
4.6 A proportional gain controller.................. 76
4.7 An ideal proportional-differential gain controller....... . 77
xvi INTRODUCTION TO PHYSICAL MODEUNG WITH MODELICA
4.8 A system containing a controller and motor........... 78
4.9 A comparison of controllers using redeclare......... 78
4.10 An example of how to redeclare several components...... 81
4.11 A simple gear model....................... 83
5.1 A function to find a name in an array of names......... 92
5.2 Invoking the FindName function............... 94
5.3 A piece-wise linear function................... 94
5.4 Evaluation of a polynomial and its derivative.......... 97
5.5 Calculating the sum of a series of sine waves.......... 98
5.6 A Modelica wrapper function for a C subroutine........ 101
5.7 A Modelica wrapper function for a FORTRAN77 subroutine. . 102
6.1 Poorly designed connector definition for use in multiple
body problems.......................... 114
6.2 Better connector definition for multiple body problems
(using vectors).......................... 115
6.3 Model for a free body in three dimensional space........ 115
6.4 A function to calculate gravitational force............ 117
6.5 A gravitational attraction model................. 117
6.6 Encapsulating the gravitational force calculation........ 118
6.7 Creating a binary system..................... 118
6.8 A system including the Earth, Sun and Moon.......... 119
6.9 Using arrays of variables to solve Equation (6.11)........ 123
6.10 Connector for heat transfer.................... 124
6.11 Thermal conduction....................... 125
6.12 Thermal capacitance....................... 125
6.13 Fixed temperature boundary condition.............. 125
6.14 A rod which conducts heat.................... 127
6.15 Heat transfer in a conducting rod with boundary conditions.. . 127
6.16 A model of thermal convection................. 129
6.17 Addition o£ the convection effect................ 129
6.18 Heat transfer problem involving conduction and convection. . 130
6.19 A conducting rod using the Thermal library.......... 132
7.1 Model of an and gate...................... 157
7.2 Model of an or gate...................... 157
7.3 Model of a not gate...................... 157
7.4 Model of a circuit to test And, Or and Hot........... 159
7.5 Modeling lag in a digital signal................. 160
7.6 Introducing lag into our logic response............. 160
7.7 A continuous bouncing ball.................. 162
7.8 A discrete bouncing ball.................... 163
7.9 Another discrete bouncing ball................ 165
7.10 Source code for our sensor benchmark system......... 168
7.11 Sensor that samples speed measurements............ 169
7.12 Measurement with quantization................. 172
7.13 Interval encoding measurement................. 174
7.14 An interval counting approach.................. 177
8.1 An ideal diode model....................... 191
8.2 Non-linear spring backlash model................ 194
8.3 Coefficient of restitution backlash model............ 195
List of Examples xvii
8.4 A general thermal property model interface........... 200
8.5 A specific thermal property model................ 201
8.6 A non-linear thermal capacitance model............. 201
8.7 A rod changing from solid to liquid............... 202
9.1 Using a function to describe a gravity field.......... 221
9.2 A particle model that uses dynamic scoping........... 222
9.3 Gravitational acceleration generated by two bodies....... 223
9.4 Particles orbiting two bodies in interesting ways........ 224
9.5 A Modelica model with annotations............... 226
9.6 Using annotations for documentation.............. 228
|
any_adam_object | 1 |
author | Tiller, Michael |
author_facet | Tiller, Michael |
author_role | aut |
author_sort | Tiller, Michael |
author_variant | m t mt |
building | Verbundindex |
bvnumber | BV017905956 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.C65 |
callnumber-search | QA76.9.C65 |
callnumber-sort | QA 276.9 C65 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 250 ST 341 |
classification_tum | PHY 016f DAT 306f MTA 009f |
ctrlnum | (OCoLC)249477126 (DE-599)BVBBV017905956 |
dewey-full | 005/.35133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005/.35133 |
dewey-search | 005/.35133 |
dewey-sort | 15 535133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Physik Informatik |
edition | 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02273nam a2200553 cb4500</leader><controlfield tag="001">BV017905956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170515 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040308s2004 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792373677</subfield><subfield code="9">0-7923-7367-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249477126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017905956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.C65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005/.35133</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 341</subfield><subfield code="0">(DE-625)143666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 016f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 306f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 009f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tiller, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to physical modeling with Modelica</subfield><subfield code="c">Michael Tiller</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass. u.a.</subfield><subfield code="b">Kluwer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 344 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">The Kluwer international series in engineering and computer science</subfield><subfield code="v">615</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modelica</subfield><subfield code="0">(DE-588)4657257-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Objektorientierte Analyse</subfield><subfield code="0">(DE-588)4504809-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modelica</subfield><subfield code="0">(DE-588)4657257-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Objektorientierte Analyse</subfield><subfield code="0">(DE-588)4504809-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">The Kluwer international series in engineering and computer science</subfield><subfield code="v">615</subfield><subfield code="w">(DE-604)BV023545171</subfield><subfield code="9">615</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010740602&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010740602</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV017905956 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:23:07Z |
institution | BVB |
isbn | 0792373677 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010740602 |
oclc_num | 249477126 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-M347 DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-M347 DE-83 |
physical | XXII, 344 S. graph. Darst. CD-ROM (12 cm) |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Kluwer |
record_format | marc |
series | The Kluwer international series in engineering and computer science |
series2 | The Kluwer international series in engineering and computer science |
spelling | Tiller, Michael Verfasser aut Introduction to physical modeling with Modelica Michael Tiller 2. print. Boston, Mass. u.a. Kluwer 2004 XXII, 344 S. graph. Darst. CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier The Kluwer international series in engineering and computer science 615 Modelica (DE-588)4657257-0 gnd rswk-swf Objektorientierte Analyse (DE-588)4504809-5 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Modelica (DE-588)4657257-0 s DE-604 Objektorientierte Analyse (DE-588)4504809-5 s 2\p DE-604 Computersimulation (DE-588)4148259-1 s 3\p DE-604 The Kluwer international series in engineering and computer science 615 (DE-604)BV023545171 615 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010740602&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tiller, Michael Introduction to physical modeling with Modelica The Kluwer international series in engineering and computer science Modelica (DE-588)4657257-0 gnd Objektorientierte Analyse (DE-588)4504809-5 gnd Computersimulation (DE-588)4148259-1 gnd |
subject_GND | (DE-588)4657257-0 (DE-588)4504809-5 (DE-588)4148259-1 (DE-588)4151278-9 |
title | Introduction to physical modeling with Modelica |
title_auth | Introduction to physical modeling with Modelica |
title_exact_search | Introduction to physical modeling with Modelica |
title_full | Introduction to physical modeling with Modelica Michael Tiller |
title_fullStr | Introduction to physical modeling with Modelica Michael Tiller |
title_full_unstemmed | Introduction to physical modeling with Modelica Michael Tiller |
title_short | Introduction to physical modeling with Modelica |
title_sort | introduction to physical modeling with modelica |
topic | Modelica (DE-588)4657257-0 gnd Objektorientierte Analyse (DE-588)4504809-5 gnd Computersimulation (DE-588)4148259-1 gnd |
topic_facet | Modelica Objektorientierte Analyse Computersimulation Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010740602&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023545171 |
work_keys_str_mv | AT tillermichael introductiontophysicalmodelingwithmodelica |