Examples and theorems in analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Springer
2004
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 287 S. graph. Darst. |
ISBN: | 1852334932 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017832987 | ||
003 | DE-604 | ||
005 | 20040427 | ||
007 | t | ||
008 | 040203s2004 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 969819196 |2 DE-101 | |
020 | |a 1852334932 |9 1-85233-493-2 | ||
035 | |a (OCoLC)52728872 | ||
035 | |a (DE-599)BVBBV017832987 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-824 |a DE-384 |a DE-521 |a DE-634 |a DE-83 |a DE-11 |a DE-188 |a DE-29T | ||
050 | 0 | |a QA303.2.W35 2004 | |
082 | 0 | |a 515 22 | |
082 | 0 | |a 515 |2 22 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a 26-01 |2 msc | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Walker, Peter L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Examples and theorems in analysis |c Peter Walker |
264 | 1 | |a London [u.a.] |b Springer |c 2004 | |
300 | |a X, 287 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Analyse (wiskunde) |2 gtt | |
650 | 4 | |a Análisis matemático | |
650 | 4 | |a Cálculo | |
650 | 7 | |a Reële functies |2 gtt | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Calculus | |
650 | 4 | |a Fourier analysis | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010703840&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010703840 |
Datensatz im Suchindex
_version_ | 1804130519869292544 |
---|---|
adam_text | PETER WALKER EXAMPLES AND THEOREMS IN ANALYSIS WITH 19 FIGURES SPRINGER
CONTENTS 1 . SEQUENCES
.................................................. 1 1.1 EXAMPLES.
FORMULAE AND RECURSION ......................... 2 1.2 MONOTONE AND
BOUNDED SEQUENCES .......................... 4 1.5 CAUCHY SEQUENCES
........................................ 23 1.3 CONVERGENCE
............................................. 9 1.4 SUBSEQUENCES
............................................ 20 EXERCISES
.................................................... 28 2 . FUNCTIONS
AND CONTINUITY ................................... 31 2.1 EXAMPLES
......................... .................. 32 2.2 MONOTONE AND BOUNDED
FUNCTIONS ................... 2.3 LIMITS AND CONTINUITY
................... 2.4 BOUNDS AND INTERMEDIATE VALUES
.................... 2.5 INVERSE FUNCTIONS
......................................... 50 2.6 RECURSIVE LIMITS AND
ITERATION ......................... 2.7 ONE-SIDED AND INFINITE LIMITS .
REGULATED FUNCTIONS ........... 56
...................................... ... 60 2.8 COUNTABILITY EXERCISES
......... ........................................ 64 . . 35
............... 38 45 53 3 . DIFFERENTIATION
.............................................. 67 3.1 DIFFERENTIABLE
FUNCTIONS ................................... 67 3.2 THE SIGNIFICANCE OF
THE DERIVATIVE .......................... 71 3.3 RULES FOR
DIFFERENTIATION ................................... 75 3.4 MEAN VALUE
THEOREMS AND ESTIMATION ...................... 79 3.6 OPTIMISATION
.............................................
........................................ 3.5 MORE ON ITERATION 86 93 IX
EXERCISES .................................................... 99 4 .
CONSTRUCTIVE INTEGRATION .................................... 103 4.2
THE INTEGRAL OF A REGULATED FUNCTION ....................... 107 4.3
INTEGRATION AND DIFFERENTIATION ............................. 111 4.4
APPLICATIONS ............................................. 117 4.5
FURTHER MEAN VALUE THEOREMS ............................. 119 EXERCISES
.................................................... 122 4.1 STEP
FUNCTIONS ........................................... 104 5 . IMPROPER
INTEGRALS ......................................... 125 5.1 IMPROPER
INTEGRALS ON AN INTERVAL ........................... 126 5.2 IMPROPER
INTEGRALS AT INFINITY .............................. 128 5.3 THE GAMMA
FUNCTION ..................................... 132 EXERCISES
.................................................... 138 6 . SERIES
....................................................... 141 6.1
CONVERGENCE ............................................. 141 6.2 SERIES
WITH POSITIVE TERMS ................................. 144 6.3 SERIES
WITH ARBITRARY TERMS ............................... 149 6.4 POWER
SERIES ............................................. 157 6.5 EXPONENTIAL
AND TRIGONOMETRIC FUNCTIONS ................... 163 6.6 SEQUENCES AND
SERIES OF FUNCTIONS .......................... 172 6.7 INFINITE PRODUCTS
......................................... 184 EXERCISES
.................................................... 190 7 .
APPLICATIONS ................................................ 195 7.1
FOURIER SERIES ............................................ 195 7.2
FOURIER INTEGRALS ......................................... 208 7.3
DISTRIBUTIONS ............................................. 219 7.4
ASYMPTOTICS ............................................. 235 EXERCISES
.................................................... 243 A . FUBINI*S
THEOREM ........................................... 249 B . HINTS AND
SOLUTIONS FOR EXERCISES ........................... 257 BIBLIOGRAPHY
.................................................... 283 INDEX
........................................................... 285
|
any_adam_object | 1 |
author | Walker, Peter L. |
author_facet | Walker, Peter L. |
author_role | aut |
author_sort | Walker, Peter L. |
author_variant | p l w pl plw |
building | Verbundindex |
bvnumber | BV017832987 |
callnumber-first | Q - Science |
callnumber-label | QA303 |
callnumber-raw | QA303.2.W35 2004 |
callnumber-search | QA303.2.W35 2004 |
callnumber-sort | QA 3303.2 W35 42004 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 130 SK 400 |
ctrlnum | (OCoLC)52728872 (DE-599)BVBBV017832987 |
dewey-full | 51522 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 22 515 |
dewey-search | 515 22 515 |
dewey-sort | 3515 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01664nam a2200493 c 4500</leader><controlfield tag="001">BV017832987</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040427 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040203s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">969819196</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1852334932</subfield><subfield code="9">1-85233-493-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52728872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017832987</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA303.2.W35 2004</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515 22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walker, Peter L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Examples and theorems in analysis</subfield><subfield code="c">Peter Walker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 287 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Análisis matemático</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cálculo</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reële functies</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010703840&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010703840</subfield></datafield></record></collection> |
id | DE-604.BV017832987 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:22:20Z |
institution | BVB |
isbn | 1852334932 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010703840 |
oclc_num | 52728872 |
open_access_boolean | |
owner | DE-20 DE-824 DE-384 DE-521 DE-634 DE-83 DE-11 DE-188 DE-29T |
owner_facet | DE-20 DE-824 DE-384 DE-521 DE-634 DE-83 DE-11 DE-188 DE-29T |
physical | X, 287 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
spelling | Walker, Peter L. Verfasser aut Examples and theorems in analysis Peter Walker London [u.a.] Springer 2004 X, 287 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Analyse (wiskunde) gtt Análisis matemático Cálculo Reële functies gtt Mathematical analysis Calculus Fourier analysis Analysis (DE-588)4001865-9 gnd rswk-swf Analysis (DE-588)4001865-9 s DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010703840&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Walker, Peter L. Examples and theorems in analysis Analyse (wiskunde) gtt Análisis matemático Cálculo Reële functies gtt Mathematical analysis Calculus Fourier analysis Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4001865-9 |
title | Examples and theorems in analysis |
title_auth | Examples and theorems in analysis |
title_exact_search | Examples and theorems in analysis |
title_full | Examples and theorems in analysis Peter Walker |
title_fullStr | Examples and theorems in analysis Peter Walker |
title_full_unstemmed | Examples and theorems in analysis Peter Walker |
title_short | Examples and theorems in analysis |
title_sort | examples and theorems in analysis |
topic | Analyse (wiskunde) gtt Análisis matemático Cálculo Reële functies gtt Mathematical analysis Calculus Fourier analysis Analysis (DE-588)4001865-9 gnd |
topic_facet | Analyse (wiskunde) Análisis matemático Cálculo Reële functies Mathematical analysis Calculus Fourier analysis Analysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010703840&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT walkerpeterl examplesandtheoremsinanalysis |