Elliptic complexes in the calculus of variations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Polska Akad. Nauk, Inst. Matematyczny
2003
|
Schriftenreihe: | Dissertationes mathematicae
418 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 63 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017822263 | ||
003 | DE-604 | ||
005 | 20040909 | ||
007 | t | ||
008 | 040203s2003 |||| 00||| eng d | ||
035 | |a (OCoLC)53805656 | ||
035 | |a (DE-599)BVBBV017822263 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-91G |a DE-12 |a DE-188 | ||
050 | 0 | |a QA1 | |
084 | |a SI 390 |0 (DE-625)143141: |2 rvk | ||
084 | |a MAT 490d |2 stub | ||
084 | |a MAT 474d |2 stub | ||
100 | 1 | |a Giannetti, Flavia |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic complexes in the calculus of variations |c Flavia Giannetti |
264 | 1 | |a Warszawa |b Polska Akad. Nauk, Inst. Matematyczny |c 2003 | |
300 | |a 63 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertationes mathematicae |v 418 | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Complexes | |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |D s |
689 | 0 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Dissertationes mathematicae |v 418 |w (DE-604)BV000003039 |9 418 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010699132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010699132 |
Datensatz im Suchindex
_version_ | 1804130513165746176 |
---|---|
adam_text | Titel: Elliptic complexes in the calculus of variations
Autor: Giannetti, Flavia
Jahr: 2003
CONTENTS
1. Introduction................................................ 5
2. Requisites from analysis and function spaces............................ 8
2.1. Orlicz spaces............................................. 8
2.2. Schwartz distributions .......................................10
2.3. The maximal operator.......................................11
2.4. Hardy spaces.............................................12
3. Elliptic complexes ............................................13
3.1. Introduction .............................................13
3.2. Elliptic complexes..........................................17
3.3. Elliptic couples and quasiharmonic fields ...........................20
3.4. Variational integrals ........................................23
4. Jacobian determinants..........................................26
4.1. Introduction .............................................26
4.2. Distributional Jacobian ......................................29
4.3. Estimates of Jacobians by subdeterminants..........................32
4.3.1. Whitney cubes........................................33
4.3.2. Isoperimetric inequality ..................................34
4.4. Proof of Theorem 4.7........................................35
4.5. Proof of Theorem 4.6........................................37
4.6. Examples ...............................................38
4.7. Further results............................................40
5. Mappings of finite distortion......................................42
5.1. Introduction .............................................42
5.2. The Beltrami equation.......................................43
5.3. Regularity results for vector fields of bounded distortion..................45
5.4. Further results............................................50
6. Lower semicontinuity of a class of multiple integrals .......................53
6.1. Introduction .............................................53
6.2. Main result..............................................55
6.3. Polyconvex case...........................................57
6.4. Further results............................................58
References.................................................. 60
2000 Mathematics Subject Classification . 58J10, 26B10, 30C65, 49J40.
Received 15.7.2002; revised version 30.12.2002.
Acknowledgements. The author wishes to thank G. Moscariello and T. Iwaniec for their useful
comments and suggestions.
|
any_adam_object | 1 |
author | Giannetti, Flavia |
author_facet | Giannetti, Flavia |
author_role | aut |
author_sort | Giannetti, Flavia |
author_variant | f g fg |
building | Verbundindex |
bvnumber | BV017822263 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 |
callnumber-search | QA1 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 390 |
classification_tum | MAT 490d MAT 474d |
ctrlnum | (OCoLC)53805656 (DE-599)BVBBV017822263 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01599nam a2200421 cb4500</leader><controlfield tag="001">BV017822263</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040909 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040203s2003 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)53805656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017822263</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 390</subfield><subfield code="0">(DE-625)143141:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 490d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 474d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giannetti, Flavia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic complexes in the calculus of variations</subfield><subfield code="c">Flavia Giannetti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Polska Akad. Nauk, Inst. Matematyczny</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">63 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">418</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">418</subfield><subfield code="w">(DE-604)BV000003039</subfield><subfield code="9">418</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010699132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010699132</subfield></datafield></record></collection> |
id | DE-604.BV017822263 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:22:13Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010699132 |
oclc_num | 53805656 |
open_access_boolean | |
owner | DE-703 DE-29T DE-91G DE-BY-TUM DE-12 DE-188 |
owner_facet | DE-703 DE-29T DE-91G DE-BY-TUM DE-12 DE-188 |
physical | 63 S. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Polska Akad. Nauk, Inst. Matematyczny |
record_format | marc |
series | Dissertationes mathematicae |
series2 | Dissertationes mathematicae |
spelling | Giannetti, Flavia Verfasser aut Elliptic complexes in the calculus of variations Flavia Giannetti Warszawa Polska Akad. Nauk, Inst. Matematyczny 2003 63 S. txt rdacontent n rdamedia nc rdacarrier Dissertationes mathematicae 418 Calculus of variations Complexes Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Elliptischer Differentialoperator (DE-588)4140057-4 gnd rswk-swf Elliptischer Differentialoperator (DE-588)4140057-4 s Variationsrechnung (DE-588)4062355-5 s DE-604 Dissertationes mathematicae 418 (DE-604)BV000003039 418 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010699132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Giannetti, Flavia Elliptic complexes in the calculus of variations Dissertationes mathematicae Calculus of variations Complexes Variationsrechnung (DE-588)4062355-5 gnd Elliptischer Differentialoperator (DE-588)4140057-4 gnd |
subject_GND | (DE-588)4062355-5 (DE-588)4140057-4 |
title | Elliptic complexes in the calculus of variations |
title_auth | Elliptic complexes in the calculus of variations |
title_exact_search | Elliptic complexes in the calculus of variations |
title_full | Elliptic complexes in the calculus of variations Flavia Giannetti |
title_fullStr | Elliptic complexes in the calculus of variations Flavia Giannetti |
title_full_unstemmed | Elliptic complexes in the calculus of variations Flavia Giannetti |
title_short | Elliptic complexes in the calculus of variations |
title_sort | elliptic complexes in the calculus of variations |
topic | Calculus of variations Complexes Variationsrechnung (DE-588)4062355-5 gnd Elliptischer Differentialoperator (DE-588)4140057-4 gnd |
topic_facet | Calculus of variations Complexes Variationsrechnung Elliptischer Differentialoperator |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010699132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003039 |
work_keys_str_mv | AT giannettiflavia ellipticcomplexesinthecalculusofvariations |