Funktionentheorie: eine Einführung
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Ausgabe: | 6. Aufl. |
Schriftenreihe: | Springer-Lehrbuch
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | 1. und 2. Aufl. unter dem Titel: Einführung in die Funktionentheorie |
Beschreibung: | 123 S. graph. Darst. |
ISBN: | 3540203923 9783540203926 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017784528 | ||
003 | DE-604 | ||
005 | 20160720 | ||
007 | t | ||
008 | 040116s2004 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 970624735 |2 DE-101 | |
020 | |a 3540203923 |9 3-540-20392-3 | ||
020 | |a 9783540203926 |9 978-3-540-20392-6 | ||
035 | |a (OCoLC)64654676 | ||
035 | |a (DE-599)BVBBV017784528 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-29 |a DE-703 |a DE-91G |a DE-1051 |a DE-M347 |a DE-128 |a DE-706 |a DE-19 |a DE-355 |a DE-384 |a DE-29T |a DE-526 |a DE-634 |a DE-83 |a DE-11 |a DE-B768 | ||
050 | 0 | |a QA331 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a 30-01 |2 msc | ||
084 | |a MAT 300f |2 stub | ||
100 | 1 | |a Jänich, Klaus |d 1940- |e Verfasser |0 (DE-588)135665450 |4 aut | |
245 | 1 | 0 | |a Funktionentheorie |b eine Einführung |c Klaus Jänich |
250 | |a 6. Aufl. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a 123 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer-Lehrbuch | |
500 | |a 1. und 2. Aufl. unter dem Titel: Einführung in die Funktionentheorie | ||
650 | 4 | |a Functions | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Functions of several complex variables | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www3.ub.tu-berlin.de/ihv/000945219.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678447&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010678447 |
Datensatz im Suchindex
_version_ | 1804130484140113920 |
---|---|
adam_text | Inhaltsverzeichnis
1. Holomorphe Funktionen
1.1 Komplexe Differenzierbarkeit.................1
1.2 Potenzreihen.................................2
1.3 Die Cauchy-Riemannschen
Differentialgleichungen.......................5
1.4 Übungsaufgaben.............................8
1.5 Hinweise zu den Übungsaufgaben.............9
2. Der Cauchysche Integralsatz
2.1 Kurvenintegrale.............................10
2.2 Der Cauchysche Integralsatz
für ein Rechteck.............................11
2.3 Cauchyscher Integralsatz
für Bilder von Rechtecken...................14
2.4 Übungsaufgaben............................17
2.5 Hinweise zu den Übungsaufgaben............18
3. Erste Folgerungen
aus dem Cauchyschen Integralsatz
3.1 Die Cauchyformel...........................20
3.2 Der Potenzreihenentwicklungssatz...........21
3.3 Satz von
3.4 Nullstellen holomorpher Funktionen.........26
3.5 Identitätssatz und Gebietstreue..............29
3.6 Übungsaufgaben............................32
3.7 Hinweise zu den Übungsaufgaben............33
viii Inhaltsverzeichnis
4. Isolierte Singularitäten
4.1 Die drei Typen isolierter Singularitäten......35
4.2 Meromorphe Funktionen....................36
4.3 Laurentreihen...............................37
4.4 Laurentreihenentwicklung...................40
4.5 Anwendung auf isolierte Singularitäten......42
4.6 Übungsaufgaben............................43
4.7 Hinweise zu den Übungsaufgaben............45
5. Analytische Fortsetzung
5.1 Analytische Fortsetzung längs Kreisketten ... 46
5.2 Der komplexe Logarithmus als Beispiel......48
5.3 Analytische Fortsetzung längs Wegen........50
5.4 Analytische Fortsetzung
und Kurvenintegrale........................52
5.5 Homotopie von Wegen......................54
5.6 Der Monodromiesatz........................59
5.7 Übungsaufgaben............................62
5.8 Hinweise zu den Übungsaufgaben............63
6. Die Umlaufszahlversion
des Cauchyschen Integralsatzes
6.1 Die Frage nach einer allgemeinen Fassung
des Cauchyschen Integralsatzes..............64
6.2 Die Umlaufszahl............................65
6.3 Die Umlaufszahlversion
des Cauchyschen Integralsatzes..............69
6.4 Cauchyformel und Residuensatz.............72
6.5 Übungsaufgaben............................74
6.6 Hinweise zu den Übungsaufgaben............76
7. Der Residuenkalkül
7.1 Vorbemerkungen............................77
7.2 Integrale über die ganze reelle Achse.........78
7.3 Hauptwerte.................................80
7.4 Integrale über die positive reelle Halbachse .. 83
7.5 Integrale über ein Intervall..................84
Inhaltsverzeichnis
7.6 Das Null- und Polstellen zählende Integral.. 85
7.7 Übungsaufgaben...........................88
7.8 Hinweise zu den Übungsaufgaben...........90
8. Folgen holomorpher Funktionen
8.1 Kompakte Konvergenz.....................91
8.2 Blätterzahlen von Grenzfunktionen.........92
8.3 Lokal beschränkte Folgen...................94
8.4 Der Satz von
8.5 Übungsaufgaben...........................97
8.6 Hinweise zu den Übungsaufgaben...........98
9. Satz von Mittag-Leffler
und Weierstraßscher Produktsatz
9.1 Der Satz von Mittag-Leffler................99
9.2 Die Partialbruchzerlegung von
9.3 Unendliche Produkte......................102
9.4 Der Weierstraßsche Produktsatz...........104
9.5 Übungsaufgaben..........................107
9.6 Hinweise zu den Übungsaufgaben.........108
10. Der Riemannsche Abbildungssatz
10.1 Der Satz..................................110
10.2 Erster Beweisschritt.......................112
10.3 Zweiter Beweisschritt.....................114
10.4 Dritter Beweisschritt......................116
10.5 Übungsaufgaben..........................117
10.6 Hinweise zu den Übungsaufgaben.........118
Literaturverzeichnis............................119
Register..........................................120
|
any_adam_object | 1 |
author | Jänich, Klaus 1940- |
author_GND | (DE-588)135665450 |
author_facet | Jänich, Klaus 1940- |
author_role | aut |
author_sort | Jänich, Klaus 1940- |
author_variant | k j kj |
building | Verbundindex |
bvnumber | BV017784528 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 700 |
classification_tum | MAT 300f |
ctrlnum | (OCoLC)64654676 (DE-599)BVBBV017784528 |
discipline | Mathematik |
edition | 6. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01889nam a2200481 c 4500</leader><controlfield tag="001">BV017784528</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160720 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040116s2004 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">970624735</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540203923</subfield><subfield code="9">3-540-20392-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540203926</subfield><subfield code="9">978-3-540-20392-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64654676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017784528</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-128</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jänich, Klaus</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135665450</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="b">eine Einführung</subfield><subfield code="c">Klaus Jänich</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">6. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">123 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer-Lehrbuch</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. und 2. Aufl. unter dem Titel: Einführung in die Funktionentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several complex variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www3.ub.tu-berlin.de/ihv/000945219.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678447&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010678447</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV017784528 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:21:46Z |
institution | BVB |
isbn | 3540203923 9783540203926 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010678447 |
oclc_num | 64654676 |
open_access_boolean | |
owner | DE-29 DE-703 DE-91G DE-BY-TUM DE-1051 DE-M347 DE-128 DE-706 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-384 DE-29T DE-526 DE-634 DE-83 DE-11 DE-B768 |
owner_facet | DE-29 DE-703 DE-91G DE-BY-TUM DE-1051 DE-M347 DE-128 DE-706 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-384 DE-29T DE-526 DE-634 DE-83 DE-11 DE-B768 |
physical | 123 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series2 | Springer-Lehrbuch |
spelling | Jänich, Klaus 1940- Verfasser (DE-588)135665450 aut Funktionentheorie eine Einführung Klaus Jänich 6. Aufl. Berlin [u.a.] Springer 2004 123 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer-Lehrbuch 1. und 2. Aufl. unter dem Titel: Einführung in die Funktionentheorie Functions Functions of complex variables Functions of several complex variables Funktionentheorie (DE-588)4018935-1 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Funktionentheorie (DE-588)4018935-1 s DE-604 http://www3.ub.tu-berlin.de/ihv/000945219.pdf Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678447&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Jänich, Klaus 1940- Funktionentheorie eine Einführung Functions Functions of complex variables Functions of several complex variables Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4123623-3 |
title | Funktionentheorie eine Einführung |
title_auth | Funktionentheorie eine Einführung |
title_exact_search | Funktionentheorie eine Einführung |
title_full | Funktionentheorie eine Einführung Klaus Jänich |
title_fullStr | Funktionentheorie eine Einführung Klaus Jänich |
title_full_unstemmed | Funktionentheorie eine Einführung Klaus Jänich |
title_short | Funktionentheorie |
title_sort | funktionentheorie eine einfuhrung |
title_sub | eine Einführung |
topic | Functions Functions of complex variables Functions of several complex variables Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Functions Functions of complex variables Functions of several complex variables Funktionentheorie Lehrbuch |
url | http://www3.ub.tu-berlin.de/ihv/000945219.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678447&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT janichklaus funktionentheorieeineeinfuhrung |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis