Combinatorial designs: constructions and analysis
"Combinatorial Designs aims to thoroughly develop the most important techniques used for constructing combinatorial designs. The book provides a detailed and clear exposition of the classical core of combinatorial designs, treating the material progressively from simple to more complex. Readers...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2004
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Combinatorial Designs aims to thoroughly develop the most important techniques used for constructing combinatorial designs. The book provides a detailed and clear exposition of the classical core of combinatorial designs, treating the material progressively from simple to more complex. Readers will master various construction techniques, both classic and modern, and will be well prepared to build a vast array of combinatorial designs. The main prerequisites are familiarity with basic abstract algebra, linear algebra and some number theory fundamentals."--BOOK JACKET. |
Beschreibung: | Literaturverz. S. 287 - 293 |
Beschreibung: | XVI, 300 S. graph. Darst. |
ISBN: | 0387954872 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017783795 | ||
003 | DE-604 | ||
005 | 20060602 | ||
007 | t | ||
008 | 040113s2004 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 969623976 |2 DE-101 | |
020 | |a 0387954872 |c Pp. : EUR 69.50 |9 0-387-95487-2 | ||
035 | |a (OCoLC)52257997 | ||
035 | |a (DE-599)BVBBV017783795 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-384 |a DE-11 |a DE-706 | ||
050 | 0 | |a QA166.25 | |
082 | 0 | |a 511/.6 |2 21 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a ST 170 |0 (DE-625)143602: |2 rvk | ||
100 | 1 | |a Stinson, Douglas R. |d 1956- |e Verfasser |0 (DE-588)124658814 |4 aut | |
245 | 1 | 0 | |a Combinatorial designs |b constructions and analysis |c Douglas R. Stinson |
264 | 1 | |a New York [u.a.] |b Springer |c 2004 | |
300 | |a XVI, 300 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 287 - 293 | ||
520 | 1 | |a "Combinatorial Designs aims to thoroughly develop the most important techniques used for constructing combinatorial designs. The book provides a detailed and clear exposition of the classical core of combinatorial designs, treating the material progressively from simple to more complex. Readers will master various construction techniques, both classic and modern, and will be well prepared to build a vast array of combinatorial designs. The main prerequisites are familiarity with basic abstract algebra, linear algebra and some number theory fundamentals."--BOOK JACKET. | |
650 | 4 | |a Combinatorial designs and configurations | |
650 | 0 | 7 | |a Kombinatorische Designtheorie |0 (DE-588)4164747-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Designtheorie |0 (DE-588)4164747-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010678063 |
Datensatz im Suchindex
_version_ | 1804130483593805824 |
---|---|
adam_text | CONTENTS
FOREWORD
.........................................................
V
I
I
PREFACE
...........................................................
I
X
1
INTRODUCTION
TO
BALANCED
INCOMPLETE
BLOCK
DESIGNS
............
1
1
.
1
WHA
TI
SDE
SIGNT
HE
OR
Y?...................................
1
1
.
2
B
A
SICDE
FINITIONSA
NDPROP
E
R
TIE
S............................
2
1
.
3
I
NC
ID
E
NC
EM
A
TR
IC
E
S........................................
6
1
.
4
I
SOMOR
P
HISMSA
NDA
UTOMOR
P
HISMS........................
8
1.4.1
CONSTRUCTING
BIBDS
WITH
SPECIFIED
AUTOMORPHISMS.
.
.
12
1
.
5
N
E
WB
I
B
DSF
ROMOLD
.....................................
1
5
1
.
6
FISHE
R SI
NE
QUA
LITY........................................
1
6
1
.
7
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
1
8
1
.
8
E
X
E
RC
ISE
S.................................................
1
9
2
SYMMETRIC
BIBDS
.............................................
2
3
2
.
1
A
NI
NTE
R
SE
C
TIONPROP
E
R
TY
..................................
2
3
2
.
2
RE
SID
UA
LA
NDDE
R
IV
E
DB
I
B
DS...............................
2
5
2
.
3
PROJE
C
TIV
EPLA
NE
SA
NDGE
OME
TR
IE
S
..........................
2
7
2
.
4
T
HEB
RUC
K-
RYSE
R-
C
HOWLAT
HE
ORE
M.........................
3
0
2
.
5
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
3
9
2
.
6
E
X
E
RC
ISE
S.................................................
3
9
3
DIFFERENCE
SETS
AND
AUTOMORPHISMS
...........................
4
1
3
.
1
DIFF
E
RE
NC
ES
E
TSA
NDA
UTOMOR
P
HISMS........................
4
1
3
.
2
QUA
D
R
A
TICRE
SID
UEDIFF
E
RE
NC
ES
E
TS..........................
5
0
3
.
3
S
INGE
RDIFF
E
RE
NC
ES
E
TS.....................................
5
2
3
.
4
T
HEM
ULTIP
LIE
RT
HE
ORE
M...................................
5
4
3
.
4
.
1
M
ULTIP
LIE
R
SOFDIFF
E
RE
NC
ES
E
TS........................
5
4
3
.
4
.
2
T
HEGROUPRING....................................
5
8
3
.
4
.
3
PROOFOFTHEM
ULTIP
LIE
RT
HE
ORE
M.....................
6
1
XIV
CONTENTS
3.5
DIFFERENCE
FAMILIES
.......................................
6
3
3.6
A
CONSTRUCTION
FOR
DIFFERENCE
FAMILIES
.
....................
6
6
3
.
7
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
6
9
3
.
8
E
X
E
RC
ISE
S.................................................
7
0
4
HADAMARD
MATRICES
AND
DESIGNS
...............................
7
3
4
.
1
HA
D
A
MA
RDM
A
TR
IC
E
S.......................................
7
3
4.2
AN
EQUIVALENCE
BETWEEN
HADAMARD
MATRICES
AND
BIBDS
.
.
.
.
74
4
.
3
C
ONF
E
RE
NC
EM
A
TR
IC
E
SA
NDHA
D
A
MA
RDM
A
TR
IC
E
S...............
7
6
4
.
4
APROD
UC
TC
ONSTRUC
TION
...................................
8
0
4.5
WILLIAMSON S
METHOD
.
.
...................................
8
1
4.6
EXISTENCE
RESULTS
FOR
HADAMARD
MATRICES
OF
SMALL
ORDERS..
.
.
84
4
.
7
RE
GULA
RHA
D
A
MA
RDM
A
TR
IC
E
S...............................
8
4
4
.
7
.
1
E
X
C
E
SSOFHA
D
A
MA
RDM
A
TR
IC
E
S
.......................
8
7
4
.
8
B
E
NTFUNC
TIONS............................................
8
9
4
.
9
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
9
8
4
.
1
0
E
X
E
RC
ISE
S.................................................
9
8
5
RESOLVABLE
BIBDS
.............................................
1
0
1
5
.
1
I
NTROD
UC
TION..............................................
1
0
1
5
.
2
A
FFINEPLA
NE
SA
NDGE
OME
TR
IE
S..............................
1
0
2
5.2.1
RESOLVABILITY
OF
AFFINE
PLANES
.
.
.
....................
1
0
4
5
.
2
.
2
PROJE
C
TIV
EA
NDA
FFINEPLA
NE
S.........................
1
0
6
5
.
2
.
3
A
FFINEGE
OME
TR
IE
S..................................
1
0
7
5
.
3
B
OSE
SI
NE
QUA
LITYA
NDA
FFINERE
SOLV
A
B
LEB
I
B
DS..............
1
0
9
5
.
3
.
1
S
YMME
TR
ICB
I
B
DSF
ROMA
FFINERE
SOLV
A
B
LEB
I
B
DS......
1
1
4
5
.
4
OR
THOGONA
LRE
SOLUTIONS
...................................
1
1
5
5
.
5
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
1
1
9
5
.
6
E
X
E
RC
ISE
S.................................................
1
2
0
6
LATIN
SQUARES
.................................................
1
2
3
6
.
1
L
A
TINS
QUA
RE
SA
NDQUA
SIGROUP
S............................
1
2
3
6
.
2
S
TE
INE
RTR
IP
LES
YSTE
MS.....................................
1
2
6
6
.
2
.
1
T
HEB
OSEC
ONSTRUC
TION..............................
1
2
7
6
.
2
.
2
T
HES
KOLE
MC
ONSTRUC
TION
...........................
1
2
8
6
.
3
OR
THOGONA
LL
A
TINS
QUA
RE
S
.................................
1
3
1
6
.
4
M
UTUA
LLYOR
THOGONA
LL
A
TINS
QUA
RE
S........................
1
3
6
6
.
4
.
1
M
OL
SA
NDA
FFINEPLA
NE
S............................
1
3
6
6
.
4
.
2
M
A
C
N
E
ISH ST
HE
ORE
M...............................
1
3
9
6
.
5
OR
THOGONA
LA
R
R
A
YS........................................
1
4
0
6
.
5
.
1
OR
THOGONA
LA
R
R
A
YSA
NDM
OL
S.......................
1
4
0
6
.
5
.
2
S
OMEC
ONSTRUC
TIONSF
OROR
THOGONA
LA
R
R
A
YS...........
1
4
2
6
.
6
TR
A
NSV
E
R
SA
LDE
SIGNS.......................................
1
4
4
6
.
7
WILSON SC
ONSTRUC
TION.....................................
1
4
6
6
.
8
DISP
ROOFOFTHEE
ULE
RC
ONJE
C
TURE
...........................
1
5
1
CONTENTS
XV
6
.
9
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
1
5
3
6
.
1
0
E
X
E
RC
ISE
S.................................................
1
5
3
7
PAIRWISE
BALANCED
DESIGNS
I
...................................
1
5
7
7
.
1
DE
FINITIONSA
NDB
A
SICRE
SULTS
..............................
1
5
7
7
.
2
N
E
C
E
SSA
R
YC
OND
ITIONSA
NDPB
D-
C
LOSURE
....................
1
5
9
7
.
3
S
TE
INE
RTR
IP
LES
YSTE
MS.....................................
1
6
4
7.4
(
V
,4,1
)
-
BIBD
S
............................................
1
6
7
7
.
5
KIR
KMA
NTR
IP
LES
YSTE
MS...................................
1
7
0
7
.
6
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
1
7
6
7
.
7
E
X
E
RC
ISE
S.................................................
1
7
7
8
PAIRWISE
BALANCED
DESIGNS
II
..................................
1
7
9
8
.
1
T
HES
TA
NTON-
KA
LB
FLE
ISC
HB
OUND
............................
1
7
9
8.1.1
THE
ERD¨OS-
D
EB
RUIJNT
HE
ORE
M
.......................
1
8
3
8
.
2
I
MP
ROV
E
DB
OUND
S.........................................
1
8
5
8
.
2
.
1
S
OMEE
X
A
MP
LE
S
....................................
1
8
8
8
.
3
M
INIMA
LPB
DSA
NDPROJE
C
TIV
EPLA
NE
S
.......................
1
9
0
8.4
MINIMAL
PBDS
WITH
YY
1
.................................
1
9
3
8
.
5
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
1
9
8
8
.
6
E
X
E
RC
ISE
S.................................................
1
9
8
9
T-DESIGNS
AND
T-WISE
BALANCED
DESIGNS
........................
2
0
1
9.1
BASIC
DEFINITIONS
AND
PROPERTIES
OF
T
-
DE
SIGNS................
2
0
1
9.2
SOME
CONSTRUCTIONS
FOR
T
-DESIGNS
WITH
T
YY
3................
2
0
6
9
.
2
.
1
I
NV
E
R
SIV
EPLA
NE
S....................................
2
0
9
9
.
2
.
2
S
OME5
-
DE
SIGNS....................................
2
1
2
9.3
T
-
WISEB
A
LA
NC
E
DDE
SIGNS...................................
2
1
6
9
.
3
.
1
HOLE
SA
NDS
UB
D
E
SIGNS
..............................
2
1
7
9
.
4
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
2
2
1
9
.
5
E
X
E
RC
ISE
S.................................................
2
2
2
10
ORTHOGONAL
ARRAYS
AND
CODES
.................................
2
2
5
1
0
.
1
OR
THOGONA
LA
R
R
A
YS........................................
2
2
5
1
0
.
2
C
OD
E
S....................................................
2
3
0
1
0
.
3
B
OUND
SONC
OD
E
SA
NDOR
THOGONA
LA
R
R
A
YS...................
2
3
3
1
0
.
4
N
E
WC
OD
E
SF
ROMOLD
.....................................
2
3
6
1
0
.
5
B
INA
R
YC
OD
E
S.............................................
2
3
9
1
0
.
5
.
1
T
HEPLOTKINB
OUNDA
NDHA
D
A
MA
RDC
OD
E
S
............
2
3
9
1
0
.
5
.
2
RE
E
D
-
M
ULLE
RC
OD
E
S.................................
2
4
2
10.6
RESILIENT
FUNCTIONS.
.......................................
2
4
9
1
0
.
7
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
2
5
3
1
0
.
8
E
X
E
RC
ISE
S.................................................
2
5
3
XVI
CONTENTS
11
APPLICATIONS
OF
COMBINATORIAL
DESIGNS
........................
2
5
7
1
1
.
1
A
UTHE
NTIC
A
TIONC
OD
E
S.....................................
2
5
7
1
1
.
1
.
1
AC
ONSTRUC
TIONF
ROMOR
THOGONA
LA
R
R
A
YS
.............
2
5
9
1
1
.
2
T
HRE
SHOLDS
C
HE
ME
S
.......................................
2
6
1
1
1
.
2
.
1
AC
ONSTRUC
TIONF
ROMOR
THOGONA
LA
R
R
A
YS
.............
2
6
1
1
1
.
2
.
2
A
NONYMOUST
HRE
SHOLDS
C
HE
ME
S.....................
2
6
3
1
1
.
3
GROUPTE
STINGA
LGOR
ITHMS.................................
2
6
4
1
1
.
3
.
1
AC
ONSTRUC
TIONF
ROMB
I
B
DS
.........................
2
6
6
1
1
.
4
TWO-
POINTS
A
MP
LING
......................................
2
6
8
1
1
.
4
.
1
M
ONTEC
A
R
LOA
LGOR
ITHMS............................
2
6
8
1
1
.
4
.
2
OR
THOGONA
LA
R
R
A
YSA
NDTWO-
POINTS
A
MP
LING
.........
2
7
0
1
1
.
5
N
OTE
SA
NDRE
F
E
RE
NC
E
S
.....................................
2
7
3
1
1
.
6
E
X
E
RC
ISE
S.................................................
2
7
3
A
SMALL
SYMMETRIC
BIBDS
AND
ABELIAN
DIFFERENCE
SETS
...........
2
7
9
B
FINITE
FIELDS
..................................................
2
8
1
REFERENCES
........................................................
2
8
7
INDEX
.............................................................
2
9
5
|
any_adam_object | 1 |
author | Stinson, Douglas R. 1956- |
author_GND | (DE-588)124658814 |
author_facet | Stinson, Douglas R. 1956- |
author_role | aut |
author_sort | Stinson, Douglas R. 1956- |
author_variant | d r s dr drs |
building | Verbundindex |
bvnumber | BV017783795 |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166.25 |
callnumber-search | QA166.25 |
callnumber-sort | QA 3166.25 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 890 ST 170 |
ctrlnum | (OCoLC)52257997 (DE-599)BVBBV017783795 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02103nam a2200409 c 4500</leader><controlfield tag="001">BV017783795</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060602 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040113s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">969623976</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387954872</subfield><subfield code="c">Pp. : EUR 69.50</subfield><subfield code="9">0-387-95487-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52257997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017783795</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA166.25</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 170</subfield><subfield code="0">(DE-625)143602:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stinson, Douglas R.</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124658814</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial designs</subfield><subfield code="b">constructions and analysis</subfield><subfield code="c">Douglas R. Stinson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 300 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 287 - 293</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Combinatorial Designs aims to thoroughly develop the most important techniques used for constructing combinatorial designs. The book provides a detailed and clear exposition of the classical core of combinatorial designs, treating the material progressively from simple to more complex. Readers will master various construction techniques, both classic and modern, and will be well prepared to build a vast array of combinatorial designs. The main prerequisites are familiarity with basic abstract algebra, linear algebra and some number theory fundamentals."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial designs and configurations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Designtheorie</subfield><subfield code="0">(DE-588)4164747-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Designtheorie</subfield><subfield code="0">(DE-588)4164747-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010678063</subfield></datafield></record></collection> |
id | DE-604.BV017783795 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:21:45Z |
institution | BVB |
isbn | 0387954872 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010678063 |
oclc_num | 52257997 |
open_access_boolean | |
owner | DE-703 DE-384 DE-11 DE-706 |
owner_facet | DE-703 DE-384 DE-11 DE-706 |
physical | XVI, 300 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
spelling | Stinson, Douglas R. 1956- Verfasser (DE-588)124658814 aut Combinatorial designs constructions and analysis Douglas R. Stinson New York [u.a.] Springer 2004 XVI, 300 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 287 - 293 "Combinatorial Designs aims to thoroughly develop the most important techniques used for constructing combinatorial designs. The book provides a detailed and clear exposition of the classical core of combinatorial designs, treating the material progressively from simple to more complex. Readers will master various construction techniques, both classic and modern, and will be well prepared to build a vast array of combinatorial designs. The main prerequisites are familiarity with basic abstract algebra, linear algebra and some number theory fundamentals."--BOOK JACKET. Combinatorial designs and configurations Kombinatorische Designtheorie (DE-588)4164747-6 gnd rswk-swf Kombinatorische Designtheorie (DE-588)4164747-6 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Stinson, Douglas R. 1956- Combinatorial designs constructions and analysis Combinatorial designs and configurations Kombinatorische Designtheorie (DE-588)4164747-6 gnd |
subject_GND | (DE-588)4164747-6 |
title | Combinatorial designs constructions and analysis |
title_auth | Combinatorial designs constructions and analysis |
title_exact_search | Combinatorial designs constructions and analysis |
title_full | Combinatorial designs constructions and analysis Douglas R. Stinson |
title_fullStr | Combinatorial designs constructions and analysis Douglas R. Stinson |
title_full_unstemmed | Combinatorial designs constructions and analysis Douglas R. Stinson |
title_short | Combinatorial designs |
title_sort | combinatorial designs constructions and analysis |
title_sub | constructions and analysis |
topic | Combinatorial designs and configurations Kombinatorische Designtheorie (DE-588)4164747-6 gnd |
topic_facet | Combinatorial designs and configurations Kombinatorische Designtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010678063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stinsondouglasr combinatorialdesignsconstructionsandanalysis |