Duality for smooth families in equivariant stable homotopy theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Soc. Math. de France
2003
|
Schriftenreihe: | Astérisque
285 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 108 S. graph. Darst. |
ISBN: | 2856291368 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017541049 | ||
003 | DE-604 | ||
005 | 20031104 | ||
007 | t | ||
008 | 030929s2003 fr d||| |||| 00||| eng d | ||
020 | |a 2856291368 |9 2-85629-136-8 | ||
035 | |a (OCoLC)248996503 | ||
035 | |a (DE-599)BVBBV017541049 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a fr |c FR | ||
049 | |a DE-19 |a DE-384 |a DE-824 |a DE-29T |a DE-355 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA612.7 | |
082 | 0 | |a 514/.24 |2 22 | |
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
084 | |a 55P91 |2 msc | ||
100 | 1 | |a Hu, Po |e Verfasser |4 aut | |
245 | 1 | 0 | |a Duality for smooth families in equivariant stable homotopy theory |c Po Hu |
264 | 1 | |a Paris |b Soc. Math. de France |c 2003 | |
300 | |a 108 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 285 | |
650 | 7 | |a Algebraïsche topologie |2 gtt | |
650 | 4 | |a Dualité, Principe de (Mathématiques) | |
650 | 4 | |a Faisceaux, Théorie des | |
650 | 4 | |a Homotopie | |
650 | 7 | |a Homotopie |2 gtt | |
650 | 7 | |a Homotopie |2 rasuqam | |
650 | 7 | |a Isomorphisme (Mathématiques) |2 rasuqam | |
650 | 4 | |a Isomorphismes (Mathématiques) | |
650 | 7 | |a Principe de dualité |2 rasuqam | |
650 | 7 | |a Théorie des faisceaux |2 rasuqam | |
650 | 4 | |a Duality theory (Mathematics) | |
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Isomorphisms (Mathematics) | |
650 | 4 | |a Sheaf theory | |
650 | 0 | 7 | |a Dualität |0 (DE-588)4013161-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Äquivariante stabile Homotopietheorie |0 (DE-588)4128137-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dualität |0 (DE-588)4013161-0 |D s |
689 | 0 | 1 | |a Äquivariante stabile Homotopietheorie |0 (DE-588)4128137-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Astérisque |v 285 |w (DE-604)BV002579439 |9 285 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010560623&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010560623 |
Datensatz im Suchindex
_version_ | 1804130319819866112 |
---|---|
adam_text | ASTERISQUE 285 DUALITY FOR SMOOTH FAMILIES IN EQUIVARIANT STABLE
HOMOTOPY THEORY SUB GSTTINGEN 7 216 032 652 2003 A 22332 PO HU SOCIETE
MATHEMATIQUE DE FRANCE 2003 PUBLIE AVEC LE CONCOURS DU CENTRE NATIONAL
DE LA RECHERCHE SCIENTIFLQUE CONTENTS INTRODUCTION 1 1. MOTIVATION 5 2.
SPACES AND SPECTRA OVER A BASE SPACE 7 3. CLOSED MODEL STRUCTURE ON
SPECTRA OVER A BASE 21 4. THE EQUIVARIANT DUALITY THEOREM 29 5. PROOF OF
THE MAIN THEOREM 45 6. THE WIRTHMIILLER AND ADAMS ISOMORPHISMS 79 7.
PROOF OF RESULTS ON THE MODEL STRUCTURE OVER A BASE 101 BIBLIOGRAPHY 107
|
any_adam_object | 1 |
author | Hu, Po |
author_facet | Hu, Po |
author_role | aut |
author_sort | Hu, Po |
author_variant | p h ph |
building | Verbundindex |
bvnumber | BV017541049 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.7 |
callnumber-search | QA612.7 |
callnumber-sort | QA 3612.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 832 |
ctrlnum | (OCoLC)248996503 (DE-599)BVBBV017541049 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02120nam a2200577 cb4500</leader><controlfield tag="001">BV017541049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031104 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030929s2003 fr d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2856291368</subfield><subfield code="9">2-85629-136-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248996503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017541049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">fr</subfield><subfield code="c">FR</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55P91</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Po</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Duality for smooth families in equivariant stable homotopy theory</subfield><subfield code="c">Po Hu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Soc. Math. de France</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">108 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">285</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraïsche topologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dualité, Principe de (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faisceaux, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopie</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Isomorphisme (Mathématiques)</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isomorphismes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Principe de dualité</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie des faisceaux</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isomorphisms (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sheaf theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Äquivariante stabile Homotopietheorie</subfield><subfield code="0">(DE-588)4128137-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Äquivariante stabile Homotopietheorie</subfield><subfield code="0">(DE-588)4128137-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">285</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">285</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010560623&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010560623</subfield></datafield></record></collection> |
id | DE-604.BV017541049 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:19:09Z |
institution | BVB |
isbn | 2856291368 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010560623 |
oclc_num | 248996503 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-384 DE-824 DE-29T DE-355 DE-BY-UBR DE-83 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-384 DE-824 DE-29T DE-355 DE-BY-UBR DE-83 DE-11 |
physical | 108 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Soc. Math. de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Hu, Po Verfasser aut Duality for smooth families in equivariant stable homotopy theory Po Hu Paris Soc. Math. de France 2003 108 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Astérisque 285 Algebraïsche topologie gtt Dualité, Principe de (Mathématiques) Faisceaux, Théorie des Homotopie Homotopie gtt Homotopie rasuqam Isomorphisme (Mathématiques) rasuqam Isomorphismes (Mathématiques) Principe de dualité rasuqam Théorie des faisceaux rasuqam Duality theory (Mathematics) Homotopy theory Isomorphisms (Mathematics) Sheaf theory Dualität (DE-588)4013161-0 gnd rswk-swf Äquivariante stabile Homotopietheorie (DE-588)4128137-8 gnd rswk-swf Dualität (DE-588)4013161-0 s Äquivariante stabile Homotopietheorie (DE-588)4128137-8 s DE-604 Astérisque 285 (DE-604)BV002579439 285 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010560623&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hu, Po Duality for smooth families in equivariant stable homotopy theory Astérisque Algebraïsche topologie gtt Dualité, Principe de (Mathématiques) Faisceaux, Théorie des Homotopie Homotopie gtt Homotopie rasuqam Isomorphisme (Mathématiques) rasuqam Isomorphismes (Mathématiques) Principe de dualité rasuqam Théorie des faisceaux rasuqam Duality theory (Mathematics) Homotopy theory Isomorphisms (Mathematics) Sheaf theory Dualität (DE-588)4013161-0 gnd Äquivariante stabile Homotopietheorie (DE-588)4128137-8 gnd |
subject_GND | (DE-588)4013161-0 (DE-588)4128137-8 |
title | Duality for smooth families in equivariant stable homotopy theory |
title_auth | Duality for smooth families in equivariant stable homotopy theory |
title_exact_search | Duality for smooth families in equivariant stable homotopy theory |
title_full | Duality for smooth families in equivariant stable homotopy theory Po Hu |
title_fullStr | Duality for smooth families in equivariant stable homotopy theory Po Hu |
title_full_unstemmed | Duality for smooth families in equivariant stable homotopy theory Po Hu |
title_short | Duality for smooth families in equivariant stable homotopy theory |
title_sort | duality for smooth families in equivariant stable homotopy theory |
topic | Algebraïsche topologie gtt Dualité, Principe de (Mathématiques) Faisceaux, Théorie des Homotopie Homotopie gtt Homotopie rasuqam Isomorphisme (Mathématiques) rasuqam Isomorphismes (Mathématiques) Principe de dualité rasuqam Théorie des faisceaux rasuqam Duality theory (Mathematics) Homotopy theory Isomorphisms (Mathematics) Sheaf theory Dualität (DE-588)4013161-0 gnd Äquivariante stabile Homotopietheorie (DE-588)4128137-8 gnd |
topic_facet | Algebraïsche topologie Dualité, Principe de (Mathématiques) Faisceaux, Théorie des Homotopie Isomorphisme (Mathématiques) Isomorphismes (Mathématiques) Principe de dualité Théorie des faisceaux Duality theory (Mathematics) Homotopy theory Isomorphisms (Mathematics) Sheaf theory Dualität Äquivariante stabile Homotopietheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010560623&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT hupo dualityforsmoothfamiliesinequivariantstablehomotopytheory |