Applied mathematics: body and soul: 1 Derivatives and geometry in R 3
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XLIII, 425 S. Ill., graph. Darst. |
ISBN: | 354000890X |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV017518571 | ||
003 | DE-604 | ||
005 | 20080801 | ||
007 | t | ||
008 | 030919s2004 ad|| |||| 00||| eng d | ||
020 | |a 354000890X |9 3-540-00890-X | ||
035 | |a (OCoLC)1070736194 | ||
035 | |a (DE-599)BVBBV017518571 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-384 |a DE-898 |a DE-29T |a DE-824 |a DE-706 |a DE-634 |a DE-83 |a DE-B768 | ||
100 | 1 | |a Eriksson, Kenneth |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applied mathematics: body and soul |n 1 |p Derivatives and geometry in R 3 |c K. Eriksson ; D. Estep ; C. Johnson |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a XLIII, 425 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Estep, Donald |e Verfasser |4 aut | |
700 | 1 | |a Johnson, Claes |e Verfasser |4 aut | |
773 | 0 | 8 | |w (DE-604)BV017518560 |g 1 |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010550931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805082852196352000 |
---|---|
adam_text |
IMAGE 1
CONTENTS VOLUME 2
INTEGRALS AND GEOMETRY IN R N 427
27 THE INTEGRAL 429
27.1 PRIMITIVE FUNCTIONS AND INTEGRALS . . . . . . . . . . . . 429
27.2 PRIMITIVE FUNCTION OF F ( X ) = X M FOR M = 0 , 1 , 2 , . . . . .
433
27.3 PRIMITIVE FUNCTION OF F ( X ) = X M FOR M = * 2 , * 3 , . . . . 434
27.4 PRIMITIVE FUNCTION OF F ( X ) = X R FOR R * = * 1 . . . . . . 434
27.5 A QUICK OVERVIEW OF THE PROGRESS SO FAR . . . . . . . 435
27.6 A "VERY QUICK PROOF" OF THE FUNDAMENTAL THEOREM . 435 27.7 A "QUICK
PROOF" OF THE FUNDAMENTAL THEOREM . . . . 437 27.8 A PROOF OF THE
FUNDAMENTAL THEOREM OF CALCULUS . . . 438 27.9 COMMENTS ON THE NOTATION
. . . . . . . . . . . . . . . 444
27.10 ALTERNATIVE COMPUTATIONAL METHODS . . . . . . . . . . 445
27.11 THE CYCLIST'S SPEEDOMETER . . . . . . . . . . . . . . . . 445
27.12 GEOMETRICAL INTERPRETATION OF THE INTEGRAL . . . . . . . 446
27.13 THE INTEGRAL AS A LIMIT OF RIEMANN SUMS . . . . . . . 448
27.14 AN ANALOG INTEGRATOR . . . . . . . . . . . . . . . . . . . 449
28 PROPERTIES OF THE INTEGRAL 453
28.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 453
28.2 REVERSING THE ORDER OF UPPER AND LOWER LIMITS . . . . 454 28.3 THE
WHOLE IS EQUAL TO THE SUM OF THE PARTS . . . . . . 454
IMAGE 2
XVIII CONTENTS VOLUME 2
28.4 INTEGRATING PIECEWISE LIPSCHITZ CONTINUOUS FUNCTIONS . . . . . . .
. . . . . . . . . . . 455
28.5 LINEARITY . . . . . . . . . . . . . . . . . . . . . . . . . . 456
28.6 MONOTONICITY . . . . . . . . . . . . . . . . . . . . . . . 457
28.7 THE TRIANGLE INEQUALITY FOR INTEGRALS . . . . . . . . . . 457
28.8 DIFFERENTIATION AND INTEGRATION ARE INVERSE OPERATIONS . . . . . .
. . . . . . . . . . . . 458
28.9 CHANGE OF VARIABLES OR SUBSTITUTION . . . . . . . . . . . 459
28.10 INTEGRATION BY PARTS . . . . . . . . . . . . . . . . . . . 461
28.11 THE MEAN VALUE THEOREM . . . . . . . . . . . . . . . . 462
28.12 MONOTONE FUNCTIONS AND THE SIGN OF THE DERIVATIVE . . 464 28.13 A
FUNCTION WITH ZERO DERIVATIVE IS CONSTANT . . . . . . 464 28.14 A
BOUNDED DERIVATIVE IMPLIES LIPSCHITZ CONTINUITY . . 465 28.15 TAYLOR'S
THEOREM . . . . . . . . . . . . . . . . . . . . . 465
28.16 OCTOBER 29, 1675 . . . . . . . . . . . . . . . . . . . . . 468
28.17 THE HODOMETER . . . . . . . . . . . . . . . . . . . . . . 469
29 THE LOGARITHM LOG( X ) 473
29.1 THE DEFINITION OF LOG( X ) . . . . . . . . . . . . . . . . . 473
29.2 THE IMPORTANCE OF THE LOGARITHM . . . . . . . . . . . . 474
29.3 IMPORTANT PROPERTIES OF LOG( X ) . . . . . . . . . . . . . 475
30 NUMERICAL QUADRATURE 479
30.1 COMPUTING INTEGRALS . . . . . . . . . . . . . . . . . . . 479
30.2 THE INTEGRAL AS A LIMIT OF RIEMANN SUMS . . . . . . . 483
30.3 THE MIDPOINT RULE . . . . . . . . . . . . . . . . . . . . 484
30.4 ADAPTIVE QUADRATURE . . . . . . . . . . . . . . . . . . . 485
31 THE EXPONENTIAL FUNCTION EXP( X ) = E X 491
31.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 491
31.2 CONSTRUCTION OF THE EXPONENTIAL EXP( X ) FOR X * 0 . . . 493 31.3
EXTENSION OF THE EXPONENTIAL EXP( X ) TO X 0 . . . . . 498
31.4 THE EXPONENTIAL FUNCTION EXP( X ) FOR X * R . . . . . . 498
31.5 AN IMPORTANT PROPERTY OF EXP( X ) . . . . . . . . . . . . 499
31.6 THE INVERSE OF THE EXPONENTIAL IS THE LOGARITHM . . . 500 31.7 THE
FUNCTION A X WITH A 0 AND X * R . . . . . . . . . 501
32 TRIGONOMETRIC FUNCTIONS 505
32.1 THE DEFINING DIFFERENTIAL EQUATION . . . . . . . . . . . 505
32.2 TRIGONOMETRIC IDENTITIES . . . . . . . . . . . . . . . . . 509
32.3 THE FUNCTIONS TAN( X ) AND COT( X ) AND THEIR DERIVATIVES 510 32.4
INVERSES OF TRIGONOMETRIC FUNCTIONS . . . . . . . . . . . 511
32.5 THE FUNCTIONS SINH( X ) AND COSH( X ) . . . . . . . . . . . 513
32.6 THE HANGING CHAIN . . . . . . . . . . . . . . . . . . . . 514
32.7 COMPARING U ** + K 2 U ( X ) = 0 AND U ** * K 2 U ( X ) = 0 . . .
515
IMAGE 3
CONTENTS VOLUME 2 XIX
33 THE FUNCTIONS EXP( Z ) , LOG( Z ) , SIN( Z ) AND COS( Z ) FOR Z * C
517 33.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .
517
33.2 DEFINITION OF EXP( Z ) . . . . . . . . . . . . . . . . . . . . 517
33.3 DEFINITION OF SIN( Z ) AND COS( Z ) . . . . . . . . . . . . . . 518
33.4 DE MOIVRES FORMULA . . . . . . . . . . . . . . . . . . . . 518
33.5 DEFINITION OF LOG( Z ) . . . . . . . . . . . . . . . . . . . . 519
34 TECHNIQUES OF INTEGRATION 521
34.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 521
34.2 RATIONAL FUNCTIONS: THE SIMPLE CASES . . . . . . . . . 522
34.3 RATIONAL FUNCTIONS: PARTIAL FRACTIONS . . . . . . . . . . 523
34.4 PRODUCTS OF POLYNOMIAL AND TRIGONOMETRIC OR EXPONENTIAL FUNCTIONS .
. . . . . . . . . . . . . . . 528
34.5 COMBINATIONS OF TRIGONOMETRIC AND ROOT FUNCTIONS . . 528 34.6
PRODUCTS OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 529 34.7 PRODUCTS OF
POLYNOMIALS AND LOGARITHM FUNCTIONS . . 529
35 SOLVING DIFFERENTIAL EQUATIONS USING THE EXPONENTIAL 531 35.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 531
35.2 GENERALIZATION TO U * ( X ) = * ( X ) U ( X ) + F ( X ) . . . . . .
. 532
35.3 THE DIFFERENTIAL EQUATION U ** ( X ) * U ( X ) = 0 . . . . . . 536
35.4 THE DIFFERENTIAL EQUATION * N
K =0 A K D K U ( X ) = 0 . . . . 537
35.5 THE DIFFERENTIAL EQUATION * N
K =0 A K D K U ( X ) = F ( X ) . . . 538
35.6 EULER'S DIF FERENTIAL EQUATION . . . . . . . . . . . . . . . 539
36 IMPROPER INTEGRALS 541
36.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 541
36.2 INTEGRALS OVER UNBOUNDED INTERVALS . . . . . . . . . . . 541
36.3 INTEGRALS OF UNBOUNDED FUNCTIONS . . . . . . . . . . . . 543
37 SERIES 547
37.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 547
37.2 DEFINITION OF CONVERGENT INFINITE SERIES . . . . . . . . . 548
37.3 POSITIVE SERIES . . . . . . . . . . . . . . . . . . . . . . . 549
37.4 ABSOLUTELY CONVERGENT SERIES . . . . . . . . . . . . . . 552
37.5 ALTERNATING SERIES . . . . . . . . . . . . . . . . . . . . . 552
37.6 THE SERIES * *
I =1 1 I THEORETICALLY DIVERGES! . . . . . . . 553
37.7 ABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
37.8 GALOIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
38 SCALAR AUTONOMOUS INITIAL VALUE PROBLEMS 559 38.1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . 559
38.2 AN ANALYTICAL SOLUTION FORMULA . . . . . . . . . . . . . 560
38.3 CONSTRUCTION OF THE SOLUTION . . . . . . . . . . . . . . . 563
IMAGE 4
XX CONTENTS VOLUME 2
39 SEPARABLE SCALAR INITIAL VALUE PROBLEMS 567
39.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 567
39.2 AN ANALYTICAL SOLUTION FORMULA . . . . . . . . . . . . . 568
39.3 VOLTERRA-LOTKA'S PREDATOR-PREY MODEL . . . . . . . . . 570
39.4 A GENERALIZATION . . . . . . . . . . . . . . . . . . . . . 571
40 THE GENERAL INITIAL VALUE PROBLEM 575
40.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 575
40.2 DETERMINISM AND MATERIALISM . . . . . . . . . . . . . . 577
40.3 PREDICTABILITY AND COMPUTABILITY . . . . . . . . . . . . 577
40.4 CONSTRUCTION OF THE SOLUTION . . . . . . . . . . . . . . . 579
40.5 COMPUTATIONAL WORK . . . . . . . . . . . . . . . . . . . 580
40.6 EXTENSION TO SECOND ORDER INITIAL VALUE PROBLEMS . . 581 40.7
NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . . 582
41 CALCULUS TOOL BAG I 585
41.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 585
41.2 RATIONAL NUMBERS . . . . . . . . . . . . . . . . . . . . 585
41.3 REAL NUMBERS. SEQUENCES AND LIMITS . . . . . . . . . . 586
41.4 POLYNOMIALS AND RATIONAL FUNCTIONS . . . . . . . . . . 586
41.5 LIPSCHITZ CONTINUITY . . . . . . . . . . . . . . . . . . . 587
41.6 DERIVATIVES . . . . . . . . . . . . . . . . . . . . . . . . 587
41.7 DIF FERENTIATION RULES . . . . . . . . . . . . . . . . . . . 587
41.8 SOLVING F ( X ) = 0 WITH F : R * R . . . . . . . . . . . . 588
41.9 INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . 589
41.10 THE LOGARITHM . . . . . . . . . . . . . . . . . . . . . . 590
41.11 THE EXPONENTIAL . . . . . . . . . . . . . . . . . . . . . 591
41.12 THE TRIGONOMETRIC FUNCTIONS . . . . . . . . . . . . . . 591
41.13 LIST OF PRIMITIVE FUNCTIONS . . . . . . . . . . . . . . . . 594
41.14 SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
41.15 THE DIFFERENTIAL EQUATION * U + * ( X ) U ( X ) = F ( X ) . . . .
595 41.16 SEPARABLE SCALAR INITIAL VALUE PROBLEMS . . . . . . . . 595
42 ANALYTIC GEOMETRY IN R N 597
42.1 INTRODUCTION AND SURVEY OF BASIC OBJECTIVES . . . . . . 597
42.2 BODY/SOUL AND ARTIFICIAL INTELLIGENCE . . . . . . . . . . 600
42.3 THE VECTOR SPACE STRUCTURE OF R N . . . . . . . . . . . . 600
42.4 THE SCALAR PRODUCT AND ORTHOGONALITY . . . . . . . . . 601
42.5 CAUCHY'S INEQUALITY . . . . . . . . . . . . . . . . . . . . 602
42.6 THE LINEAR COMBINATIONS OF A SET OF VECTORS . . . . . 603
42.7 THE STANDARD BASIS . . . . . . . . . . . . . . . . . . . . 604
42.8 LINEAR INDEPENDENCE . . . . . . . . . . . . . . . . . . . 605
42.9 REDUCING A SET OF VECTORS TO GET A BASIS . . . . . . . . 606
42.10 USING COLUMN ECHELON FORM TO OBTAIN A BASIS . . . . 607 42.11
USING COLUMN ECHELON FORM TO OBTAIN R ( A ) . . . . . 608
IMAGE 5
CONTENTS VOLUME 2 XXI
42.12 USING ROW ECHELON FORM TO OBTAIN N ( A ) . . . . . . . 610
42.13 GAUSSIAN ELIMINATION . . . . . . . . . . . . . . . . . . . 612
42.14 A BASIS FOR R N CONTAINS N VECTORS . . . . . . . . . . . 612
42.15 COORDINATES IN DIFFERENT BASES . . . . . . . . . . . . . . 614
42.16 LINEAR FUNCTIONS F : R N * R . . . . . . . . . . . . . . 615
42.17 LINEAR TRANSFORMATIONS F : R N * R M . . . . . . . . . . 615
42.18 MATRICES . . . . . . . . . . . . . . . . . . . . . . . . . . 616
42.19 MATRIX CALCULUS . . . . . . . . . . . . . . . . . . . . . . 617
42.20 THE TRANSPOSE OF A LINEAR TRANSFORMATION . . . . . . . 619
42.21 MATRIX NORMS . . . . . . . . . . . . . . . . . . . . . . . 620
42.22 THE LIPSCHITZ CONSTANT OF A LINEAR TRANSFORMATION . . 621 42.23
VOLUME IN R N : DETERMINANTS AND PERMUTATIONS . . . . 621 42.24
DEFINITION OF THE VOLUME V ( A 1 , . . . , A N ) . . . . . . . . . 623
42.25 THE VOLUME V ( A 1 , A 2 ) IN R 2 . . . . . . . . . . . . . . .
624
42.26 THE VOLUME V ( A 1 , A 2 , A 3 ) IN R 3 . . . . . . . . . . . . .
624
42.27 THE VOLUME V ( A 1 , A 2 , A 3 , A 4 ) IN R 4 . . . . . . . . . .
. 625
42.28 THE VOLUME V ( A 1 , . . . , A N ) IN R N . . . . . . . . . . . .
625
42.29 THE DETERMINANT OF A TRIANGULAR MATRIX . . . . . . . . 625
42.30 USING THE COLUMN ECHELON FORM TO COMPUTE DET A . . 625 42.31 THE
MAGIC FORMULA DET AB = DET A DET B . . . . . . . 626
42.32 TEST OF LINEAR INDEPENDENCE . . . . . . . . . . . . . . . 626
42.33 CRAMER'S SOLUTION FOR NON-SINGULAR SYSTEMS . . . . . . 628 42.34
THE INVERSE MATRIX . . . . . . . . . . . . . . . . . . . . 629
42.35 PROJECTION ONTO A SUBSPACE . . . . . . . . . . . . . . . 630
42.36 AN EQUIVALENT CHARACTERIZATION OF THE PROJECTION . . . 631 42.37
ORTHOGONAL DECOMPOSITION: PYTHAGORAS THEOREM . . . 632 42.38 PROPERTIES
OF PROJECTIONS . . . . . . . . . . . . . . . . . 633
42.39 ORTHOGONALIZATION: THE GRAM-SCHMIDT PROCEDURE . . . 633 42.40
ORTHOGONAL MATRICES . . . . . . . . . . . . . . . . . . . 634
42.41 INVARIANCE OF THE SCALAR PRODUCT UNDER ORTHOGONAL TRANSFORMATIONS
. . . . . . . . . . . 634
42.42 THE QR-DECOMPOSITION . . . . . . . . . . . . . . . . . 635
42.43 THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA . . . . . 635 42.44
CHANGE OF BASIS: COORDINATES AND MATRICES . . . . . . 637
42.45 LEAST SQUARES METHODS . . . . . . . . . . . . . . . . . . 638
43 THE SPECTRAL THEOREM 641
43.1 EIGENVALUES AND EIGENVECTORS . . . . . . . . . . . . . . 641
43.2 BASIS OF EIGENVECTORS . . . . . . . . . . . . . . . . . . . 643
43.3 AN EASY SPECTRAL THEOREM FOR SYMMETRIC MATRICES . . 644 43.4
APPLYING THE SPECTRAL THEOREM TO AN IVP . . . . . . . 645
43.5 THE GENERAL SPECTRAL THEOREM FOR SYMMETRIC MATRICES . . . . . . . .
. . . . . . . . . 646
43.6 THE NORM OF A SYMMETRIC MATRIX . . . . . . . . . . . . 648
43.7 EXTENSION TO NON-SYMMETRIC REAL MATRICES . . . . . . 649
IMAGE 6
XXII CONTENTS VOLUME 2
44 SOLVING LINEAR ALGEBRAIC SYSTEMS 651
44.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 651
44.2 DIRECT METHODS . . . . . . . . . . . . . . . . . . . . . . 651
44.3 DIRECT METHODS FOR SPECIAL SYSTEMS . . . . . . . . . . . 658
44.4 ITERATIVE METHODS . . . . . . . . . . . . . . . . . . . . . 661
44.5 ESTIMATING THE ERROR OF THE SOLUTION . . . . . . . . . . 671
44.6 THE CONJUGATE GRADIENT METHOD . . . . . . . . . . . . 674
44.7 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . 676
45 LINEAR ALGEBRA TOOL BAG 685
45.1 LINEAR ALGEBRA IN R 2 . . . . . . . . . . . . . . . . . . . 685
45.2 LINEAR ALGEBRA IN R 3 . . . . . . . . . . . . . . . . . . . 686
45.3 LINEAR ALGEBRA IN R N . . . . . . . . . . . . . . . . . . . 686
45.4 LINEAR TRANSFORMATIONS AND MATRICES . . . . . . . . . . 687
45.5 THE DETERMINANT AND VOLUME . . . . . . . . . . . . . . 688
45.6 CRAMER'S FORMULA . . . . . . . . . . . . . . . . . . . . . 688
45.7 INVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
45.8 PROJECTIONS . . . . . . . . . . . . . . . . . . . . . . . . 689
45.9 THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA . . . . . 689 45.10 THE
QR-DECOMPOSITION . . . . . . . . . . . . . . . . . 689
45.11 CHANGE OF BASIS . . . . . . . . . . . . . . . . . . . . . . 690
45.12 THE LEAST SQUARES METHOD . . . . . . . . . . . . . . . 690
45.13 EIGENVALUES AND EIGENVECTORS . . . . . . . . . . . . . . 690
45.14 THE SPECTRAL THEOREM . . . . . . . . . . . . . . . . . . 690
45.15 THE CONJUGATE GRADIENT METHOD FOR AX = B . . . . . . 690
46 THE MATRIX EXPONENTIAL EXP( XA ) 691
46.1 COMPUTATION OF EXP( XA ) WHEN A IS DIAGONALIZABLE . . 692 46.2
PROPERTIES OF EXP( AX ) . . . . . . . . . . . . . . . . . . 694
46.3 DUHAMEL'S FORMULA . . . . . . . . . . . . . . . . . . . . 694
47 LAGRANGE AND THE PRINCIPLE OF LEAST ACTION* 697 47.1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . 697
47.2 A MASS-SPRING SYSTEM . . . . . . . . . . . . . . . . . . 699
47.3 A PENDULUM WITH FIXED SUPPORT . . . . . . . . . . . . 700
47.4 A PENDULUM WITH MOVING SUPPORT . . . . . . . . . . . 701
47.5 THE PRINCIPLE OF LEAST ACTION . . . . . . . . . . . . . . 701
47.6 CONSERVATION OF THE TOTAL ENERGY . . . . . . . . . . . . 703
47.7 THE DOUBLE PENDULUM . . . . . . . . . . . . . . . . . . 703
47.8 THE TWO-BODY PROBLEM . . . . . . . . . . . . . . . . . 704
47.9 STABILITY OF THE MOTION OF A PENDULUM . . . . . . . . . 705
IMAGE 7
CONTENTS VOLUME 2 XXIII
48 N -BODY SYSTEMS* 709
48.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 709
48.2 MASSES AND SPRINGS . . . . . . . . . . . . . . . . . . . . 710
48.3 THE N -BODY PROBLEM . . . . . . . . . . . . . . . . . . 712
48.4 MASSES, SPRINGS AND DASHPOTS: SMALL DISPLACEMENTS . . . . . . . . .
. . . . . . . . . . 713
48.5 ADDING DASHPOTS . . . . . . . . . . . . . . . . . . . . . 714
48.6 A COW FALLING DOWN STAIRS . . . . . . . . . . . . . . . 715
48.7 THE LINEAR OSCILLATOR . . . . . . . . . . . . . . . . . . . 716
48.8 THE DAMPED LINEAR OSCILLATOR . . . . . . . . . . . . . 717
48.9 EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 719
49 THE CRASH MODEL* 721
49.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 721
49.2 THE SIMPLIF IED GROWTH MODEL . . . . . . . . . . . . . . 722
49.3 THE SIMPLIF IED DECAY MODEL . . . . . . . . . . . . . . . 724
49.4 THE FULL MODEL . . . . . . . . . . . . . . . . . . . . . . 725
50 ELECTRICAL CIRCUITS* 729
50.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 729
50.2 INDUCTORS, RESISTORS AND CAPACITORS . . . . . . . . . . . 730
50.3 BUILDING CIRCUITS: KIRCHHOFF'S LAWS . . . . . . . . . . . 731
50.4 MUTUAL INDUCTION . . . . . . . . . . . . . . . . . . . . . 732
51 STRING THEORY* 735
51.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 735
51.2 A LINEAR SYSTEM . . . . . . . . . . . . . . . . . . . . . 736
51.3 A SOFT SYSTEM . . . . . . . . . . . . . . . . . . . . . . . 737
51.4 A STIF F SYSTEM . . . . . . . . . . . . . . . . . . . . . . . 737
51.5 PHASE PLANE ANALYSIS . . . . . . . . . . . . . . . . . . . 738
52 PIECEWISE LINEAR APPROXIMATION 741
52.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 741
52.2 LINEAR INTERPOLATION ON [0 , 1] . . . . . . . . . . . . . . . 742
52.3 THE SPACE OF PIECEWISE LINEAR CONTINUOUS FUNCTIONS . 747 52.4 THE L
2 PROJECTION INTO V H . . . . . . . . . . . . . . . . 749
53 FEM FOR TWO-POINT BOUNDARY VALUE PROBLEMS 755 53.1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . 755
53.2 INITIAL BOUNDARY-VALUE PROBLEMS . . . . . . . . . . . . 758
53.3 STATIONARY BOUNDARY VALUE PROBLEMS . . . . . . . . . . 759
53.4 THE FINITE ELEMENT METHOD . . . . . . . . . . . . . . . 759
IMAGE 8
XXIV CONTENTS VOLUME 2
53.5 THE DISCRETE SYSTEM OF EQUATIONS . . . . . . . . . . . . 762
53.6 HANDLING DIFFERENT BOUNDARY CONDITIONS . . . . . . . . 765
53.7 ERROR ESTIMATES AND ADAPTIVE ERROR CONTROL . . . . . . 768
53.8 DISCRETIZATION OF TIME-DEPENDENT REACTION-DIFFUSION-CONVECTION
PROBLEMS . . . . . . . . 773
53.9 NON-LINEAR REACTION-DIFFUSION-CONVECTION PROBLEMS . 773
REFERENCES 777
INDEX 779 |
any_adam_object | 1 |
author | Eriksson, Kenneth Estep, Donald Johnson, Claes |
author_facet | Eriksson, Kenneth Estep, Donald Johnson, Claes |
author_role | aut aut aut |
author_sort | Eriksson, Kenneth |
author_variant | k e ke d e de c j cj |
building | Verbundindex |
bvnumber | BV017518571 |
ctrlnum | (OCoLC)1070736194 (DE-599)BVBBV017518571 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cc4500</leader><controlfield tag="001">BV017518571</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080801</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030919s2004 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354000890X</subfield><subfield code="9">3-540-00890-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1070736194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017518571</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eriksson, Kenneth</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied mathematics: body and soul</subfield><subfield code="n">1</subfield><subfield code="p">Derivatives and geometry in R 3</subfield><subfield code="c">K. Eriksson ; D. Estep ; C. Johnson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLIII, 425 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Estep, Donald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, Claes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV017518560</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010550931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV017518571 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:39:15Z |
institution | BVB |
isbn | 354000890X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010550931 |
oclc_num | 1070736194 |
open_access_boolean | |
owner | DE-20 DE-384 DE-898 DE-BY-UBR DE-29T DE-824 DE-706 DE-634 DE-83 DE-B768 |
owner_facet | DE-20 DE-384 DE-898 DE-BY-UBR DE-29T DE-824 DE-706 DE-634 DE-83 DE-B768 |
physical | XLIII, 425 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
spelling | Eriksson, Kenneth Verfasser aut Applied mathematics: body and soul 1 Derivatives and geometry in R 3 K. Eriksson ; D. Estep ; C. Johnson Berlin [u.a.] Springer 2004 XLIII, 425 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Estep, Donald Verfasser aut Johnson, Claes Verfasser aut (DE-604)BV017518560 1 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010550931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Eriksson, Kenneth Estep, Donald Johnson, Claes Applied mathematics: body and soul |
title | Applied mathematics: body and soul |
title_auth | Applied mathematics: body and soul |
title_exact_search | Applied mathematics: body and soul |
title_full | Applied mathematics: body and soul 1 Derivatives and geometry in R 3 K. Eriksson ; D. Estep ; C. Johnson |
title_fullStr | Applied mathematics: body and soul 1 Derivatives and geometry in R 3 K. Eriksson ; D. Estep ; C. Johnson |
title_full_unstemmed | Applied mathematics: body and soul 1 Derivatives and geometry in R 3 K. Eriksson ; D. Estep ; C. Johnson |
title_short | Applied mathematics: body and soul |
title_sort | applied mathematics body and soul derivatives and geometry in r 3 |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010550931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV017518560 |
work_keys_str_mv | AT erikssonkenneth appliedmathematicsbodyandsoul1 AT estepdonald appliedmathematicsbodyandsoul1 AT johnsonclaes appliedmathematicsbodyandsoul1 |