Optima and equilibria: an introduction to nonlinear analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2003
|
Ausgabe: | 2. ed., corr. 2. print. |
Schriftenreihe: | Graduate texts in mathematics
140 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Aus d. Franz. übers. |
Beschreibung: | XVII, 433 S. graph. Darst. |
ISBN: | 3540649832 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017437378 | ||
003 | DE-604 | ||
005 | 20041215 | ||
007 | t | ||
008 | 030826s2003 gw d||| |||| 00||| ger d | ||
020 | |a 3540649832 |9 3-540-64983-2 | ||
035 | |a (OCoLC)175116123 | ||
035 | |a (DE-599)BVBBV017437378 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91 |a DE-M49 |a DE-824 |a DE-19 |a DE-11 | ||
050 | 0 | |a QA427 | |
082 | 0 | |a 519.3 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a MAT 916f |2 stub | ||
084 | |a MAT 460f |2 stub | ||
084 | |a MAT 920f |2 stub | ||
100 | 1 | |a Aubin, Jean-Pierre |e Verfasser |4 aut | |
240 | 1 | 0 | |a L' analyse non linéaire et ses motivations économiques |
245 | 1 | 0 | |a Optima and equilibria |b an introduction to nonlinear analysis |c Jean-Pierre Aubin |
250 | |a 2. ed., corr. 2. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2003 | |
300 | |a XVII, 433 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 140 | |
500 | |a Aus d. Franz. übers. | ||
650 | 4 | |a Economics, Mathematical | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Nonlinear theories | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spieltheorie |0 (DE-588)4056243-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gleichgewichtstheorie |0 (DE-588)4071876-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gleichgewicht |0 (DE-588)4121372-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Spieltheorie |0 (DE-588)4056243-8 |D s |
689 | 0 | 1 | |a Gleichgewichtstheorie |0 (DE-588)4071876-1 |D s |
689 | 0 | 2 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gleichgewicht |0 (DE-588)4121372-5 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 3 | |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 140 |w (DE-604)BV000000067 |9 140 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010507665&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010507665 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804130250054959104 |
---|---|
adam_text | TABLE OF CONTENTS PART I NONLINEAR ANALYSIS: THEORY 1 MINIMISATION
PROBLEMS: GENERAL THEOREMS . . . . . . . . . . 9 1.1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 DEFINITIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 EPIGRAPH . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 LOWER SECTIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 LOWER
SEMI-CONTINUOUS FUNCTIONS . . . . . . . . . . . . . . . 11 1.6 LOWER
SEMI-COMPACT FUNCTIONS . . . . . . . . . . . . . . . . 13 1.7
APPROXIMATE MINIMISATION OF LOWER SEMI-CONTINUOUS FUNC- TIONS ON A
COMPLETE SPACE . . . . . . . . . . . . . . . . . . . 15 1.8 APPLICATION
TO FIXED-POINT THEOREMS . . . . . . . . . . . . . 17 2 CONVEX FUNCTIONS
AND PROXIMATION, PROJECTION AND SEPARA- TION THEOREMS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 21 2.1 INTRODUCTION . . . . . . .
. . . . . . . . . . . . . . . . . . . . 21 2.2 DEFINITIONS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 21 2.3 EXAMPLES OF CONVEX
FUNCTIONS . . . . . . . . . . . . . . . . . 24 2.4 CONTINUOUS CONVEX
FUNCTIONS . . . . . . . . . . . . . . . . . 25 2.5 THE PROXIMATION
THEOREM . . . . . . . . . . . . . . . . . . . 27 2.6 SEPARATION THEOREMS
. . . . . . . . . . . . . . . . . . . . . . 31 3 CONJUGATE FUNCTIONS AND
CONVEX MINIMISATION PROBLEMS . 35 3.1 INTRODUCTION . . . . . . . . . . .
. . . . . . . . . . . . . . . . 35 3.2 CHARACTERISATION OF CONVEX LOWER
SEMI-CONTINUOUS FUNCTIONS 37 3.3 FENCHEL*S THEOREM . . . . . . . . . . .
. . . . . . . . . . . . 39 3.4 PROPERTIES OF CONJ UGATE FUNCTIONS . . .
. . . . . . . . . . . . 43 3.5 SUPPORT FUNCTIONS . . . . . . . . . . . .
. . . . . . . . . . . . 48 3.6 THE CRAM` ER TRANSFORM . . . . . . . . .
. . . . . . . . . . . . 52 4 SUBDIFFERENTIALS OF CONVEX FUNCTIONS . . .
. . . . . . . . . . . 57 4.1 INTRODUCTION . . . . . . . . . . . . . . .
. . . . . . . . . . . . 57 4.2 DEFINITIONS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 61 4.3 SUBDIFFERENTIABILITY OF CONVEX
CONTINUOUS FUNCTIONS . . . . . 64 XII TABLE OF CONTENTS 4.4
SUBDIFFERENTIABILITY OF CONVEX LOWER SEMI-CONTINUOUS FUNC- TIONS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5
SUBDIFFERENTIAL CALCULUS . . . . . . . . . . . . . . . . . . . . . 67
4.6 TANGENT AND NORMAL CONES . . . . . . . . . . . . . . . . . . . 70 5
MARGINAL PROPERTIES OF SOLUTIONS OF CONVEX MINIMISATION PROBLEMS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 FERMAT*S RULE . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 MINIMISATION PROBLEMS WITH CONSTRAINTS . . . . . . . . . . . 80 5.4
PRINCIPLE OF PRICE DECENTRALISATION . . . . . . . . . . . . . . . 82 5.5
REGULARISATION AND PENALISATION . . . . . . . . . . . . . . . . 84 6
GENERALISED GRADIENTS OF LOCALLY LIPSCHITZ FUNCTIONS . . . . 87 6.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87 6.3 ELEMENTARY PROPERTIES . . . . . . . . . . . . . . . . . . . . .
91 6.4 GENERALISED GRADIENTS . . . . . . . . . . . . . . . . . . . . . .
95 6.5 NORMAL AND TANGENT CONES TO A SUBSET . . . . . . . . . . . . 97
6.6 FERMAT*S RULE FOR MINIMISATION PROBLEMS WITH CONSTRAINTS . 99 7
TWO-PERSON GAMES. FUNDAMENTAL CONCEPTS AND EXAMPLES 101 7.1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 DECISION
RULES AND CONSISTENT PAIRS OF STRATEGIES . . . . . . 102 7.3 BROUWER*S
FIXED-POINT THEOREM (1910) . . . . . . . . . . . . 104 7.4 THE NEED TO
CONVEXIFY: MIXED STRATEGIES . . . . . . . . . . . 105 7.5 GAMES IN
NORMAL (STRATEGIC) FORM . . . . . . . . . . . . . . 106 7.6 PARETO
OPTIMA . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.7
CONSERVATIVE STRATEGIES . . . . . . . . . . . . . . . . . . . . . 110
7.8 SOME FINITE GAMES . . . . . . . . . . . . . . . . . . . . . . . 112
7.9 COURNOT*S DUOPOLY . . . . . . . . . . . . . . . . . . . . . . . 116
8 TWO-PERSON ZERO-SUM GAMES: THEOREMS OF VON NEUMANN AND KY FAN . . . .
. . . . . . . . 125 8.1 INTRODUCTION . . . . . . . . . . . . . . . . . .
. . . . . . . . . 125 8.2 VALUE AND SADDLE POINTS OF A GAME . . . . . .
. . . . . . . . 125 8.3 EXISTENCE OF CONSERVATIVE STRATEGIES . . . . . .
. . . . . . . . 130 8.4 CONTINUOUS PARTITIONS OF UNITY . . . . . . . . .
. . . . . . . . 135 8.5 OPTIMAL DECISION RULES . . . . . . . . . . . . .
. . . . . . . . 137 9 SOLUTION OF NONLINEAR EQUATIONS AND INCLUSIONS . .
. . . . . . 143 9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . 143 9.2 UPPER HEMI-CONTINUOUS SET-VALUED MAPS . . . . . .
. . . . . 144 9.3 THE DEBREU*GALE*NIKA¨ *DO THEOREM . . . . . . . . . .
. . . . 148 9.4 THE TANGENTIAL CONDITION . . . . . . . . . . . . . . . .
. . . 149 TABLE OF CONTENTS XIII 9.5 THE FUNDAMENTAL THEOREM FOR THE
EXISTENCE OF ZEROS OF A SET-VALUED MAP . . . . . . . . . . . . . . . . .
. . . . . . . . 150 9.6 THE VIABILITY THEOREM . . . . . . . . . . . . .
. . . . . . . . 152 9.7 FIXED-POINT THEOREMS . . . . . . . . . . . . . .
. . . . . . . . 154 9.8 EQUILIBRIUM OF A DYNAMICAL ECONOMY . . . . . . .
. . . . . . 155 9.9 VARIATIONAL INEQUALITIES . . . . . . . . . . . . . .
. . . . . . . 157 9.10 THE LERAY*SCHAUDER THEOREM . . . . . . . . . . .
. . . . . . 159 9.11 QUASI-VARIATIONAL INEQUALITIES . . . . . . . . . .
. . . . . . . . 160 9.12 SHAPLEY*S GENERALISATION OF THE THREE-POLES
LEMMA . . . . . 162 10 INTRODUCTION TO THE THEORY OF ECONOMIC
EQUILIBRIUM . . . . 167 10.1 INTRODUCTION . . . . . . . . . . . . . . .
. . . . . . . . . . . . 167 10.2 EXCHANGE ECONOMIES . . . . . . . . . .
. . . . . . . . . . . . 168 10.3 THE WALRASIAN MECHANISM . . . . . . . .
. . . . . . . . . . . 169 10.4 ANOTHER MECHANISM FOR PRICE
DECENTRALISATION . . . . . . . . 173 10.5 COLLECTIVE BUDGETARY RULE . .
. . . . . . . . . . . . . . . . . 174 11 THE VON NEUMANN GROWTH MODEL .
. . . . . . . . . . . . . . . 179 11.1 INTRODUCTION . . . . . . . . . .
. . . . . . . . . . . . . . . . . 179 11.2 THE VON NEUMANN MODEL . . . .
. . . . . . . . . . . . . . . 179 11.3 THE PERRON*FROBENIUS THEOREM . .
. . . . . . . . . . . . . . 184 11.4 SURJ ECTIVITY OF THE M MATRICES . .
. . . . . . . . . . . . . . . 187 12 N -PERSON GAMES . . . . . . . . . .
. . . . . . . . . . . . . . . . . 189 12.1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . 189 12.2 NON-COOPERATIVE BEHAVIOUR
. . . . . . . . . . . . . . . . . . . 189 12.3 N -PERSON GAMES IN NORMAL
(STRATEGIC) FORM . . . . . . . . . 190 12.4 NON-COOPERATIVE GAMES WITH
CONSTRAINTS (METAGAMES) . . . 192 12.5 PARETO OPTIMA . . . . . . . . . .
. . . . . . . . . . . . . . . 193 12.6 BEHAVIOUR OF PLAYERS IN
COALITIONS . . . . . . . . . . . . . . . 196 12.7 COOPERATIVE GAMES
WITHOUT SIDE PAYMENTS . . . . . . . . . 197 12.8 EVOLUTIONARY GAMES . .
. . . . . . . . . . . . . . . . . . . . 205 13 COOPERATIVE GAMES AND
FUZZY GAMES . . . . . . . . . . . . . 211 13.1 INTRODUCTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . 211 13.2 COALITIONS, FUZZY
COALITIONS AND GENERALISED COALITIONS OF N PLAYERS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 211 13.3 ACTION GAMES AND
EQUILIBRIUM COALITIONS . . . . . . . . . . 216 13.4 GAMES WITH SIDE
PAYMENTS . . . . . . . . . . . . . . . . . . . 218 13.5 CORE AND SHAPLEY
VALUE OF STANDARD GAMES . . . . . . . . . 226 XIV TABLE OF CONTENTS PART
II NONLINEAR ANALYSIS: EXERCISES AND PROBLEMS 14 EXERCISES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 237 14.1 EXERCISES FOR
CHAPTER 1 * MINIMISATION PROBLEMS: GENERAL THEOREMS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 237 14.2 EXERCISES FOR CHAPTER 2 *
CONVEX FUNCTIONS AND PROXIMATION, PROJ ECTION AND SEPARATION THEOREMS .
. . . . . . . . . . . . 242 14.3 EXERCISES FOR CHAPTER 3 * CONJUGATE
FUNCTIONS AND CONVEX MINIMISATION PROBLEMS . . . . . . . . . . . . . . .
. . . . . . 247 14.4 EXERCISES FOR CHAPTER 4 * SUBDIFFERENTIALS OF
CONVEX FUNCTIONS 256 14.5 EXERCISES FOR CHAPTER 5 * MARGINAL PROPERTIES
OF SOLUTIONS OF CONVEX MINIMISATION PROBLEMS . . . . . . . . . . . . . .
. . 263 14.6 EXERCISES FOR CHAPTER 6 * GENERALISED GRADIENTS OF LOCALLY
LIPSCHITZ FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . 270
14.7 EXERCISES FOR CHAPTER 8 * TWO-PERSON ZERO-SUM GAMES: THE- OREMS OF
VON NEUMANN AND KY FAN . . . . . . . . . . . . . . 277 14.8 EXERCISES
FOR CHAPTER 9 * SOLUTION OF NONLINEAR EQUATIONS AND INCLUSIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 282 14.9 EXERCISES FOR
CHAPTER 10 * INTRODUCTION TO THE THEORY OF ECO- NOMIC EQUILIBRIUM . . .
. . . . . . . . . . . . . . . . . . . . 287 14.10 EXERCISES FOR CHAPTER
11 * THE VON NEUMANN GROWTH MODEL 292 14.11 EXERCISES FOR CHAPTER 12 * N
-PERSON GAMES . . . . . . . . . . 292 14.12 EXERCISES FOR CHAPTER 13 *
COOPERATIVE GAMES AND FUZZY GAMES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 299 15 STATEMENTS OF PROBLEMS . . . . . . . . . .
. . . . . . . . . . . . 303 15.1 PROBLEM 1 * SET-VALUED MAPS WITH A
CLOSED GRAPH . . . . . 303 15.2 PROBLEM 2 * UPPER SEMI-CONTINUOUS
SET-VALUED MAPS . . . . 303 15.3 PROBLEM 3 * IMAGE OF A SET-VALUED MAP .
. . . . . . . . . . . 304 15.4 PROBLEM 4 * INVERSE IMAGE OF A SET-VALUED
MAP . . . . . . . 304 15.5 PROBLEM 5 * POLARS OF A SET-VALUED MAP . . .
. . . . . . . . . 305 15.6 PROBLEM 6 * MARGINAL FUNCTIONS . . . . . . .
. . . . . . . . . 305 15.7 PROBLEM 7 * GENERIC CONTINUITY OF A
SET-VALUED MAP WITH A CLOSED GRAPH . . . . . . . . . . . . . . . . . . .
. . . . . . . 306 15.8 PROBLEM 8 * APPROXIMATE SELECTION OF AN UPPER
SEMI-CONTINUOUS SET-VALUED MAP . . . . . . . . . . . . . . . . . . . . .
. . . . 306 15.9 PROBLEM 9 * CONTINUOUS SELECTION OF A LOWER
SEMI-CONTINUOUS SET-VALUED MAP . . . . . . . . . . . . . . . . . . . . .
. . . . 307 15.10 PROBLEM 10 * INTERIOR OF THE IMAGE OF A CONVEX CLOSED
CONE 307 15.11 PROBLEM 11 * DISCRETE DYNAMICAL SYSTEMS . . . . . . . . .
. 310 15.12 PROBLEM 12 * FIXED POINTS OF CONTRACTIVE SET-VALUED MAPS .
312 15.13 PROBLEM 13 * APPROXIMATE VARIATIONAL PRINCIPLE . . . . . . .
313 15.14 PROBLEM 14 * OPEN IMAGE THEOREM . . . . . . . . . . . . . .
313 15.15 PROBLEM 15 * ASYMPTOTIC CENTRES . . . . . . . . . . . . . . .
315 15.16 PROBLEM 16 * FIXED POINTS OF NON-EXPANSIVE MAPPINGS . . . 316
TABLE OF CONTENTS XV 15.17 PROBLEM 17 * ORTHOGONAL PROJECTORS ONTO
CONVEX CLOSED CONES 317 15.18 PROBLEM 18 * GAMMA-CONVEX FUNCTIONS . . .
. . . . . . . . . 318 15.19 PROBLEM 19 * PROPER MAPPINGS . . . . . . . .
. . . . . . . . 319 15.20 PROBLEM 20 * FENCHEL*S THEOREM FOR THE
FUNCTIONS L ( X, AX ) 321 15.21 PROBLEM 21 * CONJUGATE FUNCTIONS OF X *
L ( X, AX ) . . . . . 322 15.22 PROBLEM 22 * HAMILTONIANS AND PARTIAL
CONJUGATES . . . . . 323 15.23 PROBLEM 23 * LACK OF CONVEXITY AND
FENCHEL*S THEOREM FOR PARETO OPTIMA . . . . . . . . . . . . . . . . . .
. . . . . . . 324 15.24 PROBLEM 24 * DUALITY IN LINEAR PROGRAMMING . . .
. . . . . 325 15.25 PROBLEM 25 * LAGRANGIAN OF A CONVEX MINIMISATION
PROBLEM 326 15.26 PROBLEM 26 * VARIATIONAL PRINCIPLES FOR CONVEX
LAGRANGIANS 327 15.27 PROBLEM 27 * VARIATIONAL PRINCIPLES FOR CONVEX
HAMILTONIANS 328 15.28 PROBLEM 28 * APPROXIMATION TO FERMAT*S RULE . . .
. . . . . 329 15.29 PROBLEM 29 * TRANSPOSES OF CONVEX PROCESSES . . . .
. . . . 329 15.30 PROBLEM 30 * CONES WITH A COMPACT BASE . . . . . . . .
. . 331 15.31 PROBLEM 31 * REGULARITY OF TANGENT CONES . . . . . . . . .
. 331 15.32 PROBLEM 32 * TANGENT CONES TO AN INTERSECTION . . . . . . .
332 15.33 PROBLEM 33 * DERIVATIVES OF SET-VALUED MAPS WITH CONVEX GRAPHS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 15.34
PROBLEM 34 * EPIDERIVATIVES OF CONVEX FUNCTIONS . . . . . . 334 15.35
PROBLEM 35 * SUBDIFFERENTIALS OF MARGINAL FUNCTIONS . . . . . 335 15.36
PROBLEM 36 * VALUES OF A GAME ASSOCIATED WITH A COVERING . 335 15.37
PROBLEM 37 * MINIMAX THEOREMS WITH WEAK COMPACTNESS ASSUMPTIONS . . . .
. . . . . . . . . . . . . . . . . . . . . . . 336 15.38 PROBLEM 38 *
MINIMAX THEOREMS FOR FINITE TOPOLOGIES . . . 337 15.39 PROBLEM 39 * KY
FAN*S INEQUALITY . . . . . . . . . . . . . . . 338 15.40 PROBLEM 40 * KY
FAN*S INEQUALITY FOR MONOTONE FUNCTIONS . 339 15.41 PROBLEM 41 *
GENERALISATION OF THE GALE*NIKA¨*DO*DEBREU THE- OREM . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 340 15.42 PROBLEM 42 *
EQUILIBRIUM OF COERCIVE SET-VALUED MAPS . . . 341 15.43 PROBLEM 43 *
EIGENVECTORS OF SET-VALUED MAPS . . . . . . . . 341 15.44 PROBLEM 44 *
POSITIVE EIGENVECTORS OF POSITIVE SET-VALUED MAPS 342 15.45 PROBLEM 45 *
SOME VARIATIONAL PRINCIPLES . . . . . . . . . . . 343 15.46 PROBLEM 46 *
GENERALISED VARIATIONAL INEQUALITIES . . . . . . 343 15.47 PROBLEM 47 *
MONOTONE SET-VALUED MAPS . . . . . . . . . . . 345 15.48 PROBLEM 48 *
WALRASIAN EQUILIBRIUM FOR SET-VALUED DEMAND MAPS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 346 16 SOLUTIONS TO PROBLEMS . . .
. . . . . . . . . . . . . . . . . . . . . 349 16.1 PROBLEM 1 * SOLUTION.
SET-VALUED MAPS WITH A CLOSED GRAPH 349 16.2 PROBLEM 2 * SOLUTION. UPPER
SEMI-CONTINUOUS SET-VALUED MAPS 349 16.3 PROBLEM 3 * SOLUTION. IMAGE OF
A SET-VALUED MAP . . . . . . 350 16.4 PROBLEM 4 * SOLUTION. INVERSE
IMAGE OF A SET-VALUED MAP . . 350 16.5 PROBLEM 5 * SOLUTION. POLARS OF A
SET-VALUED MAP . . . . . . 352 16.6 PROBLEM 6 * SOLUTION. MARGINAL
FUNCTIONS . . . . . . . . . . 352 XVI TABLE OF CONTENTS 16.7 PROBLEM 7 *
SOLUTION. GENERIC CONTINUITY OF A SET-VALUED MAP WITH A CLOSED GRAPH . .
. . . . . . . . . . . . . . . . . . . . 353 16.8 PROBLEM 8 * SOLUTION.
APPROXIMATE SELECTION OF AN UPPER SEMI-CONTINUOUS SET-VALUED MAP . . . .
. . . . . . . . . . . . 353 16.9 PROBLEM 9 * SOLUTION. CONTINUOUS
SELECTION OF A LOWER SEMI- CONTINUOUS SET-VALUED MAP . . . . . . . . . .
. . . . . . . . . 354 16.10 PROBLEM 10 * SOLUTION. INTERIOR OF THE IMAGE
OF A CONVEX CLOSED CONE . . . . . . . . . . . . . . . . . . . . . . . .
. . . 354 16.11 PROBLEM 11 * SOLUTION. DISCRETE DYNAMICAL SYSTEMS . . .
. . 358 16.12 PROBLEM 12 * SOLUTION. FIXED POINTS OF CONTRACTIVE
SET-VALUED MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 360 16.13 PROBLEM 13 * SOLUTION. APPROXIMATE VARIATIONAL PRINCIPLE
. 361 16.14 PROBLEM 14 * SOLUTION. OPEN IMAGE THEOREM . . . . . . . .
362 16.15 PROBLEM 15 * SOLUTION. ASYMPTOTIC CENTRES . . . . . . . . . .
364 16.16 PROBLEM 16 * SOLUTION. FIXED POINTS OF NON-EXPANSIVE MAP-
PINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
16.17 PROBLEM 17 * SOLUTION. ORTHOGONAL PROJECTORS ONTO CONVEX CLOSED
CONES . . . . . . . . . . . . . . . . . . . . . . . . . . 367 16.18
PROBLEM 18 * SOLUTION. GAMMA-CONVEX FUNCTIONS . . . . . . 368 16.19
PROBLEM 19 * SOLUTION. PROPER MAPPINGS . . . . . . . . . . . 369 16.20
PROBLEM 20 * SOLUTION. FENCHEL*S THEOREM FOR THE FUNCTIONS L ( X, AX ) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 16.21
PROBLEM 21 * SOLUTION. CONJUGATE FUNCTIONS OF X * L ( X, AX ) 371 16.22
PROBLEM 22 * SOLUTION. HAMILTONIANS AND PARTIAL CONJUGATES 371 16.23
PROBLEM 23 * SOLUTION. LACK OF CONVEXITY AND FENCHEL*S THE- OREM FOR
PARETO OPTIMA . . . . . . . . . . . . . . . . . . . . 372 16.24 PROBLEM
24 * SOLUTION. DUALITY IN LINEAR PROGRAMMING . . . 374 16.25 PROBLEM 25
* SOLUTION. LAGRANGIAN OF A CONVEX MINIMISATION PROBLEM . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 375 16.26 PROBLEM 26 *
SOLUTION. VARIATIONAL PRINCIPLES FOR CONVEX LA- GRANGIANS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 376 16.27 PROBLEM 27 *
SOLUTION. VARIATIONAL PRINCIPLES FOR CONVEX HAMILTONIANS . . . . . . . .
. . . . . . . . . . . . . . . . . . 376 16.28 PROBLEM 28 * SOLUTION.
APPROXIMATION TO FERMAT*S RULE . . 377 16.29 PROBLEM 29 * SOLUTION.
TRANSPOSES OF CONVEX PROCESSES . . . 378 16.30 PROBLEM 30 * SOLUTION.
CONES WITH A COMPACT BASE . . . . . 379 16.31 PROBLEM 31 * SOLUTION.
REGULARITY OF TANGENT CONES . . . . . 380 16.32 PROBLEM 32 * SOLUTION.
TANGENT CONES TO AN INTERSECTION . . 381 16.33 PROBLEM 33 * SOLUTION.
DERIVATIVES OF SET-VALUED MAPS WITH CONVEX GRAPHS . . . . . . . . . . .
. . . . . . . . . . . . . . 383 16.34 PROBLEM 34 * SOLUTION.
EPIDERIVATIVES OF CONVEX FUNCTIONS . 384 16.35 PROBLEM 35 * SOLUTION.
SUBDIFFERENTIALS OF MARGINAL FUNCTIONS 385 16.36 PROBLEM 36 * SOLUTION.
VALUES OF A GAME ASSOCIATED WITH A COVERING . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 386 TABLE OF CONTENTS XVII 16.37 PROBLEM
37 * SOLUTION. MINIMAX THEOREMS WITH WEAK COM- PACTNESS ASSUMPTIONS . .
. . . . . . . . . . . . . . . . . . . . 387 16.38 PROBLEM 38 * SOLUTION.
MINIMAX THEOREMS FOR FINITE TOPOLO- GIES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 388 16.39 PROBLEM 39 * SOLUTION. KY
FAN*S INEQUALITY . . . . . . . . . . 389 16.40 PROBLEM 40 * SOLUTION. KY
FAN*S INEQUALITY FOR MONOTONE FUNCTIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 390 16.41 PROBLEM 41 * SOLUTION. GENERALISATIONS
OF THE GALE*NIKA¨*DO* DEBREU THEOREM . . . . . . . . . . . . . . . . . .
. . . . . . 391 16.42 PROBLEM 42 * SOLUTION. EQUILIBRIUM OF COERCIVE
SET-VALUED MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 392 16.43 PROBLEM 43 * SOLUTION. EIGENVECTORS OF SET-VALUED MAPS .
. . 393 16.44 PROBLEM 44 * SOLUTION. POSITIVE EIGENVECTORS OF POSITIVE
SET- VALUED MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . .
393 16.45 PROBLEM 45 * SOLUTION. SOME VARIATIONAL PRINCIPLES . . . . .
393 16.46 PROBLEM 46 * SOLUTION. GENERALISED VARIATIONAL INEQUALITIES .
395 16.47 PROBLEM 47 * SOLUTION. MONOTONE SET-VALUED MAPS . . . . . 397
16.48 PROBLEM 48 * SOLUTION. WALRASIAN EQUILIBRIUM FOR SET-VALUED DEMAND
MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . 399 APPENDIX 17
COMPENDIUM OF RESULTS . . . . . . . . . . . . . . . . . . . . . . 403
17.1 NONTRIVIAL, CONVEX, LOWER SEMI-CONTINUOUS FUNCTIONS . . . . 403
17.2 CONVEX FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . .
405 17.3 CONJ UGATE FUNCTIONS . . . . . . . . . . . . . . . . . . . . .
. 406 17.4 SEPARATION THEOREMS AND SUPPORT FUNCTIONS . . . . . . . . .
407 17.5 SUBDIFFERENTIABILITY . . . . . . . . . . . . . . . . . . . . .
. . 410 17.6 TANGENT AND NORMAL CONES . . . . . . . . . . . . . . . . .
. . 411 17.7 OPTIMISATION . . . . . . . . . . . . . . . . . . . . . . .
. . . . 413 17.8 TWO-PERSON GAMES . . . . . . . . . . . . . . . . . . .
. . . . 415 17.9 SET-VALUED MAPS AND THE EXISTENCE OF ZEROS AND FIXED
POINTS 417 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 423 INDEX . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 429
|
any_adam_object | 1 |
author | Aubin, Jean-Pierre |
author_facet | Aubin, Jean-Pierre |
author_role | aut |
author_sort | Aubin, Jean-Pierre |
author_variant | j p a jpa |
building | Verbundindex |
bvnumber | BV017437378 |
callnumber-first | Q - Science |
callnumber-label | QA427 |
callnumber-raw | QA427 |
callnumber-search | QA427 |
callnumber-sort | QA 3427 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 130 SK 870 |
classification_tum | MAT 916f MAT 460f MAT 920f |
ctrlnum | (OCoLC)175116123 (DE-599)BVBBV017437378 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed., corr. 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02704nam a2200685 cb4500</leader><controlfield tag="001">BV017437378</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20041215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030826s2003 gw d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540649832</subfield><subfield code="9">3-540-64983-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)175116123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017437378</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA427</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 916f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 460f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 920f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">L' analyse non linéaire et ses motivations économiques</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optima and equilibria</subfield><subfield code="b">an introduction to nonlinear analysis</subfield><subfield code="c">Jean-Pierre Aubin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., corr. 2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 433 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">140</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus d. Franz. übers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, Mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gleichgewichtstheorie</subfield><subfield code="0">(DE-588)4071876-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gleichgewicht</subfield><subfield code="0">(DE-588)4121372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gleichgewichtstheorie</subfield><subfield code="0">(DE-588)4071876-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gleichgewicht</subfield><subfield code="0">(DE-588)4121372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">140</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">140</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010507665&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010507665</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV017437378 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:18:02Z |
institution | BVB |
isbn | 3540649832 |
language | German English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010507665 |
oclc_num | 175116123 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-M49 DE-BY-TUM DE-824 DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-M49 DE-BY-TUM DE-824 DE-19 DE-BY-UBM DE-11 |
physical | XVII, 433 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Aubin, Jean-Pierre Verfasser aut L' analyse non linéaire et ses motivations économiques Optima and equilibria an introduction to nonlinear analysis Jean-Pierre Aubin 2. ed., corr. 2. print. Berlin [u.a.] Springer 2003 XVII, 433 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 140 Aus d. Franz. übers. Economics, Mathematical Mathematical analysis Nonlinear theories Optimierung (DE-588)4043664-0 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Spieltheorie (DE-588)4056243-8 gnd rswk-swf Gleichgewichtstheorie (DE-588)4071876-1 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Gleichgewicht (DE-588)4121372-5 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Spieltheorie (DE-588)4056243-8 s Gleichgewichtstheorie (DE-588)4071876-1 s Nichtlineare Analysis (DE-588)4177490-5 s DE-604 Gleichgewicht (DE-588)4121372-5 s Mathematisches Modell (DE-588)4114528-8 s Optimierung (DE-588)4043664-0 s Graduate texts in mathematics 140 (DE-604)BV000000067 140 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010507665&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aubin, Jean-Pierre Optima and equilibria an introduction to nonlinear analysis Graduate texts in mathematics Economics, Mathematical Mathematical analysis Nonlinear theories Optimierung (DE-588)4043664-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Spieltheorie (DE-588)4056243-8 gnd Gleichgewichtstheorie (DE-588)4071876-1 gnd Mathematisches Modell (DE-588)4114528-8 gnd Gleichgewicht (DE-588)4121372-5 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4177490-5 (DE-588)4056243-8 (DE-588)4071876-1 (DE-588)4114528-8 (DE-588)4121372-5 (DE-588)4151278-9 |
title | Optima and equilibria an introduction to nonlinear analysis |
title_alt | L' analyse non linéaire et ses motivations économiques |
title_auth | Optima and equilibria an introduction to nonlinear analysis |
title_exact_search | Optima and equilibria an introduction to nonlinear analysis |
title_full | Optima and equilibria an introduction to nonlinear analysis Jean-Pierre Aubin |
title_fullStr | Optima and equilibria an introduction to nonlinear analysis Jean-Pierre Aubin |
title_full_unstemmed | Optima and equilibria an introduction to nonlinear analysis Jean-Pierre Aubin |
title_short | Optima and equilibria |
title_sort | optima and equilibria an introduction to nonlinear analysis |
title_sub | an introduction to nonlinear analysis |
topic | Economics, Mathematical Mathematical analysis Nonlinear theories Optimierung (DE-588)4043664-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Spieltheorie (DE-588)4056243-8 gnd Gleichgewichtstheorie (DE-588)4071876-1 gnd Mathematisches Modell (DE-588)4114528-8 gnd Gleichgewicht (DE-588)4121372-5 gnd |
topic_facet | Economics, Mathematical Mathematical analysis Nonlinear theories Optimierung Nichtlineare Analysis Spieltheorie Gleichgewichtstheorie Mathematisches Modell Gleichgewicht Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010507665&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT aubinjeanpierre lanalysenonlineaireetsesmotivationseconomiques AT aubinjeanpierre optimaandequilibriaanintroductiontononlinearanalysis |