Cyclic homology in non-commutative geometry:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
121 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 137 S. |
ISBN: | 3540404694 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017430925 | ||
003 | DE-604 | ||
005 | 20221130 | ||
007 | t | ||
008 | 030819s2004 gw |||| 00||| eng d | ||
016 | 7 | |a 968516726 |2 DE-101 | |
020 | |a 3540404694 |9 3-540-40469-4 | ||
035 | |a (OCoLC)441629553 | ||
035 | |a (DE-599)BVBBV017430925 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-19 |a DE-11 |a DE-188 |a DE-384 | ||
080 | |a 512.5 | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Cuntz, Joachim |d 1948- |e Verfasser |0 (DE-588)137444311 |4 aut | |
245 | 1 | 0 | |a Cyclic homology in non-commutative geometry |c Joachim Cuntz ; Georges Skandalis ; Boris Tsygan |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a X, 137 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v 121 | |
490 | 1 | |a Encyclopaedia of mathematical sciences / Operator algebras and non-commutative geometry |v 2 | |
650 | 0 | 7 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zyklische Homologie |0 (DE-588)4269326-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zyklische Homologie |0 (DE-588)4269326-3 |D s |
689 | 0 | 1 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 0 | 2 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Skandalis, Georges |e Verfasser |4 aut | |
700 | 1 | |a Tsygan, Boris |e Verfasser |4 aut | |
810 | 2 | |a Operator algebras and non-commutative geometry |t Encyclopaedia of mathematical sciences |v 2 |w (DE-604)BV014111511 |9 2 | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 121 |w (DE-604)BV024126459 |9 121 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010502735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010502735 |
Datensatz im Suchindex
_version_ | 1804130243521282048 |
---|---|
adam_text | CONTENTS CYCLIC THEORY, BIVARIANT K -THEORY AND THE BIVARIANT
CHERN-CONNES CHARACTER JOACHIM CUNTZ . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CYCLIC
HOMOLOGY BORIS TSYGAN . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 73 NONCOMMUTATIVE
GEOMETRY, THE TRANSVERSE SIGNATURE OPERATOR, AND HOPF ALGEBRAS [AFTER A.
CONNES AND H. MOSCOVICI] GEORGES SKANDALIS (TRANSLATED BY RAPHA¨ EL
PONGE AND NICK WRIGHT) . . . . . 115 INDEX . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 135 CYCLIC THEORY, BIVARIANT K -THEORY AND THE BIVARIANT
CHERN-CONNES CHARACTER * JOACHIM CUNTZ 1 INTRODUCTION . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 2 2 CYCLIC THEORY . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 5 2.1 PRELIMINARIES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 5 2.2 CYCLIC HOMOLOGY VIA THE CYCLIC BICOMPLEX . . . . . . . . .
. . . . . . . . . . . . . . 9 2.3 OPERATORS ON DIFFERENTIAL FORMS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 THE
PERIODIC THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 16 2.5 CYCLIC HOMOLOGY VIA THE X -COMPLEX . .
. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 CYCLIC HOMOLOGY
AS NON-COMMUTATIVE DE RHAM THEORY . . . . . . . . . . . 27 2.7 HOMOTOPY
INVARIANCE FOR CYCLIC THEORY. . . . . . . . . . . . . . . . . . . . . .
. . . . 29 2.8 MORITA INVARIANCE . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 31 2.9 EXCISION. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 33 2.10 CHERN CHARACTER FOR K -THEORY ELEMENTS . . .
. . . . . . . . . . . . . . . . . . . . . . 34 3 CYCLIC THEORY FOR
LOCALLY CONVEX ALGEBRAS . . . . . . . . . . . . . . . . . 36 3.1 GENERAL
MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 36 3.2 DE RHAM THEORY FOR DIFFERENTIABLE MANIFOLDS
. . . . . . . . . . . . . . . . . . . . 38 3.3 CYCLIC HOMOLOGY FOR
SCHATTEN IDEALS. . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 3.4 CYCLIC COCYCLES ASSOCIATED WITH FREDHOLM MODULES . . . . . . . .
. . . . . . . 40 4 BIVARIANT K -THEORY . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 42 4.1 BIVARIANT K -THEORY
FOR LOCALLY CONVEX ALGEBRAS . . . . . . . . . . . . . . . . . . 43 4.2
THE BIVARIANT CHERN-CONNES CHARACTER . . . . . . . . . . . . . . . . . .
. . . . . . . 48 5 INFINITE-DIMENSIONAL CYCLIC THEORIES . . . . . . . .
. . . . . . . . . . . . . . . 51 5.1 ENTIRE CYCLIC COHOMOLOGY . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2
LOCAL CYCLIC COHOMOLOGY . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 57 * RESEARCH SUPPORTED BY THE DEUTSCHE
FORSCHUNGSGEMEINSCHAFT 2 JOACHIM CUNTZ A LOCALLY CONVEX ALGEBRAS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A.1
ALGEBRAS OF DIFFERENTIABLE FUNCTIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 62 A.2 THE SMOOTH TENSOR ALGEBRA . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 62 A.3 THE FREE
PRODUCT OF TWO M -ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . .
. . . . 63 A.4 THE ALGEBRA OF SMOOTH COMPACT OPERATORS . . . . . . . . .
. . . . . . . . . . . . . 64 A.5 THE SCHATTEN IDEALS * P ( H ) . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.6 THE
SMOOTH TOEPLITZ ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 65 B STANDARD EXTENSIONS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 66 B.1 THE SUSPENSION
EXTENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 66 B.2 THE FREE EXTENSION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 67 B.3 THE UNIVERSAL
TWO-FOLD TRIVIAL EXTENSION. . . . . . . . . . . . . . . . . . . . . . .
. . 67 B.4 THE TOEPLITZ EXTENSION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 68 REFERENCES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 69 1 INTRODUCTION THE TWO FUNDAMENTAL *MACHINES* OF
NON-COMMUTATIVE GEOMETRY ARE (BIVARI- ANT) TOPOLOGICAL K -THEORY AND
CYCLIC HOMOLOGY. IN THE PRESENT CONTRIBUTION WE DESCRIBE THESE TWO
THEORIES AND THEIR CONNECTIONS. CYCLIC THEORY CAN BE VIEWED AS A FAR
REACHING GENERALIZATION OF THE CLASSICAL DE RHAM COHOMOLOGY, WHILE
BIVARIANT K -THEORY INCLUDES THE TOPOLOGICAL K -THEORY OF
ATIYAH-HIRZEBRUCH AS A SPECIAL CASE. THE CLASSICAL COMMUTATIVE THEORIES
CAN BE EXTENDED TO A DEGREE OF GENERAL- ITY WHICH IS QUITE STRIKING. IT
IS IMPORTANT TO NOTE HOWEVER THAT THIS EXTENSION IS BY NO MEANS SIMPLY
BASED ON GENERALIZATIONS OF THE EXISTING CLASSICAL METH- ODS. THE
CONSTRUCTIONS ARE QUITE DIFFERENT AND GIVE, IN THE COMMUTATIVE CASE, A
NEW APPROACH AND AN UNEXPECTED INTERPRETATION OF THE WELL-KNOWN
CLASSICAL THEORIES. ONE ASPECT IS THAT SOME OF THE PROPERTIES OF THE TWO
THEORIES BECOME VISIBLE ONLY IN THE NON-COMMUTATIVE CATEGORY. FOR
INSTANCE, BOTH THEORIES HAVE CERTAIN UNIVERSALITY PROPERTIES IN THIS
SETTING. BIVARIANT K -THEORY HAS FIRST BEEN DEFINED AND DEVELOPED BY
KASPAROV ON THE CATEGORY OF C * -ALGEBRAS (POSSIBLY WITH THE ACTION OF A
LOCALLY COMPACT GROUP) THEREBY UNIFYING AND DECISIVELY EXTENDING
PREVIOUS WORK BY ATIYAH- HIRZEBRUCH, BROWN-DOUGLAS-FILLMORE AND OTHERS.
KASPAROV ALSO APPLIED HIS BIVARIANT THEORY TO OBTAIN STRIKING POSITIVE
RESULTS ON THE NOVIKOV CONJEC- TURE. VERY RECENTLY [13], IT WAS
DISCOVERED THAT IN FACT, BIVARIANT TOPOLOGICAL K -THEORIES CAN BE
DEFINED ON A WIDE VARIETY OF TOPOLOGICAL ALGEBRAS RANG- ING FROM RATHER
GENERAL LOCALLY CONVEX ALGEBRAS TO E.G. BANACH ALGEBRAS OR C * -ALGEBRAS
(IN FACT, EVEN ALGEBRAS WITHOUT A SPECIFIED TOPOLOGY CAN BE COV- ERED TO
SOME EXTENT). IF E IS THE COVARIANT FUNCTOR FROM SUCH A CATEGORY C OF
ALGEBRAS GIVEN BY TOPOLOGICAL K -THEORY OR ALSO BY PERIODIC CYCLIC
HOMOLOGY, THEN IT POSSESSES THE FOLLOWING THREE FUNDAMENTAL PROPERTIES:
CYCLIC HOMOLOGY * BORIS TSYGAN 1 INTRODUCTION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2
HOCHSCHILD AND CYCLIC HOMOLOGY OF ALGEBRAS . . . . . . . . . . . . . . .
76 2.1 HOMOLOGY OF DIFFERENTIAL GRADED ALGEBRAS . . . . . . . . . . . .
. . . . . . . . . . . 78 2.2 THE HOCHSCHILD COCHAIN COMPLEX . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 79 2.3 PRODUCTS ON
HOCHSCHILD AND CYCLIC COMPLEXES . . . . . . . . . . . . . . . . . . . 80
2.4 PAIRINGS BETWEEN CHAINS AND COCHAINS . . . . . . . . . . . . . . . .
. . . . . . . . . . 82 2.5 A * STRUCTURE ON C * ( C * ( A )) . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3 THE CYCLIC
COMPLEX C * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 86 3.1 DEFINITION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2 THE
REDUCED CYCLIC COMPLEX . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 87 3.3 RELATION TO LIE ALGEBRA HOMOLOGY . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 88 3.4 THE CONNECTING
MORPHISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 88 3.5 OTHER OPERATIONS ON THE CYCLIC COMPLEXES . . . . . . . .
. . . . . . . . . . . . . . . 90 3.6 RIGIDITY OF PERIODIC CYCLIC
HOMOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4
NONCOMMUTATIVE DIFFERENTIAL CALCULUS . . . . . . . . . . . . . . . . . .
. . . 92 4.1 GERSTENHABER ALGEBRAS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 92 4.2 THE GERSTENHABER ALGEBRA
V * ( A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 CALCULI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 93 4.4 THE CALCULUS CALC(
A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 94 4.5 ENVELOPING ALGEBRA OF A GERSTENHABER ALGEBRA . . . .
. . . . . . . . . . . . . . . 95 4.6 RELATION TO THE A * STRUCTURE ON
CHAINS . . . . . . . . . . . . . . . . . . . . . . . . 95 5 CYCLIC
OBJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 96 5.1 SIMPLICIAL OBJECTS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2
CYCLIC OBJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 96 * SUPPORTED IN PART BY NSF GRANT.
74 BORIS TSYGAN 6 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.1 SMOOTH
FUNCTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 98 6.2 COMMUTATIVE ALGEBRAS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 RINGS
OF DIFFERENTIAL OPERATORS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 100 6.4 RINGS OF COMPLETE SYMBOLS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.5 RINGS OF
PSEUDODIFFERENTIAL OPERATORS . . . . . . . . . . . . . . . . . . . . . .
. . . . . 101 6.6 NONCOMMUTATIVE TORI . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 102 6.7 DEFORMATION
QUANTIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 102 6.8 THE BRYLINSKI SPECTRAL SEQUENCE . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 105 6.9 DEFORMATION
QUANTIZATION: GENERAL CASE . . . . . . . . . . . . . . . . . . . . . . .
. . 105 6.10 GROUP RINGS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 106 7 INDEX THEOREMS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 107 7.1 INDEX THEOREM FOR DEFORMATIONS OF SYMPLECTIC
STRUCTURES . . . . . . . . . . 107 7.2 INDEX THEOREM FOR HOLOMORPHIC
SYMPLECTIC DEFORMATIONS . . . . . . . . . . 108 7.3 GENERAL INDEX
THEOREM FOR DEFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . .
108 8 RIEMANN-ROCH THEOREM FOR D-MODULES . . . . . . . . . . . . . . . .
. . . . 109 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 1
INTRODUCTION MANY GEOMETRIC OBJECTS ASSOCIATED TO A MANIFOLD M CAN BE
EXPRESSED IN TERMS OF AN APPROPRIATE ALGEBRA A OF FUNCTIONS ON M
(MEASURABLE, CONTIN- UOUS, SMOOTH, HOLOMORPHIC, ALGEBRAIC, . . . ). VERY
OFTEN THOSE OBJECTS CAN BE DEFINED IN A WAY THAT IS APPLICABLE TO ANY
ALGEBRA A , COMMUTATIVE OR NOT. STUDY OF ASSOCIATIVE ALGEBRAS BY MEANS
OF SUCH OBJECTS OF GEOMETRIC ORIGIN IS THE SUBJECT OF NONCOMMUTATIVE
GEOMETRY [12,48]. THE HOCHSCHILD AND CYCLIC (CO)HOMOLOGY THEORY IS THE
PART OF NONCOMMUTATIVE GEOMETRY WHICH GENER- ALIZES THE CLASSICAL
DIFFERENTIAL AND INTEGRAL CALCULUS. THE GEOMETRIC OBJECTS BEING
GENERALIZED TO THE NONCOMMUTATIVE SETTING ARE DIFFERENTIAL FORMS, DEN-
SITIES, MULTIVECTOR FIELDS, ETC. IN OUR EXPOSITION, THE PRIMARY OBJECT
IS THE NEGATIVE CYCLIC COMPLEX CC * * ( A ). OTHER COMPLEXES, NAMELY THE
HOCHSCHILD CHAIN COMPLEX C * ( A ), THE PERIODIC CYCLIC COMPLEX CC PER *
( A ), AND THE CYCLIC COMPLEX CC * ( A ), ARE DE- FINED AS RESULTS OF
SOME NATURAL PROCEDURE APPLIED TO CC * * ( A ). THE CYCLIC HOMOLOGY IS
THE HOMOLOGY OF THE CYCLIC COMPLEX CC * ( A ). IT WAS ORIGINALLY DE-
FINED USING ANOTHER STANDARD COMPLEX WHICH WE DENOTE BY C * * ( A ). THE
STUDY OF THIS LATTER COMPLEX HAS A DISTINCTLY DIFFERENT FLAVOR, MAINLY
COMING FROM THE FACT THAT IT IS RELATED TO THE LIE ALGEBRA HOMOLOGY. THE
ABOVE COMPLEXES ARE NONCOMMUTATIVE VERSIONS OF THE SPACE OF DIFFER-
ENTIAL FORMS (THE HOCHSCHILD CHAIN COMPLEX) AND OF THE DE RHAM COMPLEX.
ONE ALSO DEFINES THE HOCHSCHILD COCHAIN COMPLEX C * ( A, A ) WHICH IS A
NON- COMMUTATIVE ANALOGUE OF THE SPACE OF MULTIVECTOR FIELDS.
NONCOMMUTATIVE GEOMETRY, THE TRANSVERSE SIGNATURE OPERATOR, AND HOPF
ALGEBRAS [AFTER A. CONNES AND H. MOSCOVICI] * GEORGES SKANDALIS
(TRANSLATED BY RAPHA¨ EL PONGE AND NICK WRIGHT) 1 PRELIMINARIES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 117 1.1 COMPLEX POWERS OF PSEUDODIFFERENTIAL OPERATORS; THE
WODZICKI-GUILLEMIN RESIDUE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 117 1.2 CYCLIC COHOMOLOGY. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 117 1.3 K
-HOMOLOGY; P -SUMMABLE CYCLES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 118 2 THE LOCAL INDEX FORMULA . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 120 3 THE DIFF-INVARIANT
SIGNATURE OPERATOR . . . . . . . . . . . . . . . . . . . . 122 3.1 THE
HILBERT SPACE H AND THE ALGEBRA A . . . . . . . . . . . . . . . . . . .
. . . . . 123 3.2 THE VERTICAL PART OF THE SIGNATURE OPERATOR. . . . . .
. . . . . . . . . . . . . . . . 124 3.3 THE HORIZONTAL PART OF THE
SIGNATURE OPERATOR . . . . . . . . . . . . . . . . . . . 124 3.4 THE
SPECTRAL TRIPLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 124 4 THE *TRANSVERSE* HOPF ALGEBRA . . . .
. . . . . . . . . . . . . . . . . . . . . . . 125 4.1 MATCHED PAIRS OF
GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 125 4.2 THE HOPF ALGEBRA H N . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 127 4.3 CYCLIC COHOMOLOGY
OF HOPF ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
128 4.4 THE CLASSIFYING MAP . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 129 4.5 CYCLIC COHOMOLOGY OF THE
HOPF ALGEBRA H N . . . . . . . . . . . . . . . . . . . . . . 129 4.6 THE
CYCLIC COCYCLE * . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 130 4.7 CALCULATION OF * . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.8 A VARIANT OF THE HOPF ALGEBRA . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 132 REFERENCES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 132 * ORIGINALLY PUBLISHED AS *G´ EOM´ ETRIE NON COMMUTATIVE, OP´
ERATEUR DE SIGNATURE TRANSVERSE ET ALG` EBRES DE HOPF* IN S´ EMINAIRE
BOURBAKI, 53 ` EME ANN´ EE, 2000*2001, NO. 892
|
any_adam_object | 1 |
author | Cuntz, Joachim 1948- Skandalis, Georges Tsygan, Boris |
author_GND | (DE-588)137444311 |
author_facet | Cuntz, Joachim 1948- Skandalis, Georges Tsygan, Boris |
author_role | aut aut aut |
author_sort | Cuntz, Joachim 1948- |
author_variant | j c jc g s gs b t bt |
building | Verbundindex |
bvnumber | BV017430925 |
classification_rvk | SK 320 SK 240 |
ctrlnum | (OCoLC)441629553 (DE-599)BVBBV017430925 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02082nam a2200481 cb4500</leader><controlfield tag="001">BV017430925</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030819s2004 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968516726</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540404694</subfield><subfield code="9">3-540-40469-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)441629553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017430925</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">512.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuntz, Joachim</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137444311</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cyclic homology in non-commutative geometry</subfield><subfield code="c">Joachim Cuntz ; Georges Skandalis ; Boris Tsygan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 137 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">121</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences / Operator algebras and non-commutative geometry</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zyklische Homologie</subfield><subfield code="0">(DE-588)4269326-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zyklische Homologie</subfield><subfield code="0">(DE-588)4269326-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skandalis, Georges</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsygan, Boris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Operator algebras and non-commutative geometry</subfield><subfield code="t">Encyclopaedia of mathematical sciences</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV014111511</subfield><subfield code="9">2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">121</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">121</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010502735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010502735</subfield></datafield></record></collection> |
id | DE-604.BV017430925 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:17:56Z |
institution | BVB |
isbn | 3540404694 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010502735 |
oclc_num | 441629553 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-188 DE-384 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-188 DE-384 |
physical | X, 137 S. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences Encyclopaedia of mathematical sciences / Operator algebras and non-commutative geometry |
spelling | Cuntz, Joachim 1948- Verfasser (DE-588)137444311 aut Cyclic homology in non-commutative geometry Joachim Cuntz ; Georges Skandalis ; Boris Tsygan Berlin [u.a.] Springer 2004 X, 137 S. txt rdacontent n rdamedia nc rdacarrier Encyclopaedia of mathematical sciences 121 Encyclopaedia of mathematical sciences / Operator algebras and non-commutative geometry 2 Nichtkommutative Geometrie (DE-588)4171742-9 gnd rswk-swf K-Theorie (DE-588)4033335-8 gnd rswk-swf Zyklische Homologie (DE-588)4269326-3 gnd rswk-swf Zyklische Homologie (DE-588)4269326-3 s K-Theorie (DE-588)4033335-8 s Nichtkommutative Geometrie (DE-588)4171742-9 s DE-604 Skandalis, Georges Verfasser aut Tsygan, Boris Verfasser aut Operator algebras and non-commutative geometry Encyclopaedia of mathematical sciences 2 (DE-604)BV014111511 2 Encyclopaedia of mathematical sciences 121 (DE-604)BV024126459 121 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010502735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cuntz, Joachim 1948- Skandalis, Georges Tsygan, Boris Cyclic homology in non-commutative geometry Encyclopaedia of mathematical sciences Nichtkommutative Geometrie (DE-588)4171742-9 gnd K-Theorie (DE-588)4033335-8 gnd Zyklische Homologie (DE-588)4269326-3 gnd |
subject_GND | (DE-588)4171742-9 (DE-588)4033335-8 (DE-588)4269326-3 |
title | Cyclic homology in non-commutative geometry |
title_auth | Cyclic homology in non-commutative geometry |
title_exact_search | Cyclic homology in non-commutative geometry |
title_full | Cyclic homology in non-commutative geometry Joachim Cuntz ; Georges Skandalis ; Boris Tsygan |
title_fullStr | Cyclic homology in non-commutative geometry Joachim Cuntz ; Georges Skandalis ; Boris Tsygan |
title_full_unstemmed | Cyclic homology in non-commutative geometry Joachim Cuntz ; Georges Skandalis ; Boris Tsygan |
title_short | Cyclic homology in non-commutative geometry |
title_sort | cyclic homology in non commutative geometry |
topic | Nichtkommutative Geometrie (DE-588)4171742-9 gnd K-Theorie (DE-588)4033335-8 gnd Zyklische Homologie (DE-588)4269326-3 gnd |
topic_facet | Nichtkommutative Geometrie K-Theorie Zyklische Homologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010502735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014111511 (DE-604)BV024126459 |
work_keys_str_mv | AT cuntzjoachim cyclichomologyinnoncommutativegeometry AT skandalisgeorges cyclichomologyinnoncommutativegeometry AT tsyganboris cyclichomologyinnoncommutativegeometry |