Radial level planarity testing and embedding in linear time:
Abstract: "Every planar graph has a concentric representation based on a breadth first search, see [24]. The vertices are placed on concentric circles and the edges are routed as curves without crossings. Here we take the opposite view. A graph with a given partitioning of its vertices onto k c...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Passau
Fak. für Math. u.Informatik / Univ. Passau
2003
|
Schriftenreihe: | MIP
2003,03 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Every planar graph has a concentric representation based on a breadth first search, see [24]. The vertices are placed on concentric circles and the edges are routed as curves without crossings. Here we take the opposite view. A graph with a given partitioning of its vertices onto k concentric circles is k-radial planar, if the edges can be routed monotonic between the circles without crossings. Radial planarity is a generalisation of level planarity, where the vertices are placed on k horizontal lines. We extend the technique for level planarity tesing of [13, 14, 16-18, 20] and show that radial planarity is decidable in linear time, and that a radial planar embedding can be computed in linear time." |
Beschreibung: | 3, 34. S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017358123 | ||
003 | DE-604 | ||
005 | 20030902 | ||
007 | t | ||
008 | 030730s2003 gw ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)53893960 | ||
035 | |a (DE-599)BVBBV017358123 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-154 |a DE-739 |a DE-12 |a DE-703 |a DE-91G | ||
084 | |a SS 5600 |0 (DE-625)143571: |2 rvk | ||
100 | 1 | |a Bachmaier, Christian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Radial level planarity testing and embedding in linear time |c C. Bachmaier ; F. J. Brandenburg ; M. Forster |
264 | 1 | |a Passau |b Fak. für Math. u.Informatik / Univ. Passau |c 2003 | |
300 | |a 3, 34. S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a MIP |v 2003,03 | |
520 | 3 | |a Abstract: "Every planar graph has a concentric representation based on a breadth first search, see [24]. The vertices are placed on concentric circles and the edges are routed as curves without crossings. Here we take the opposite view. A graph with a given partitioning of its vertices onto k concentric circles is k-radial planar, if the edges can be routed monotonic between the circles without crossings. Radial planarity is a generalisation of level planarity, where the vertices are placed on k horizontal lines. We extend the technique for level planarity tesing of [13, 14, 16-18, 20] and show that radial planarity is decidable in linear time, and that a radial planar embedding can be computed in linear time." | |
650 | 4 | |a Embeddings (Mathematics) | |
650 | 4 | |a Graph theory | |
700 | 1 | |a Brandenburg, Franz-Josef |e Verfasser |4 aut | |
700 | 1 | |a Forster, Michael |e Verfasser |0 (DE-588)122905660 |4 aut | |
830 | 0 | |a MIP |v 2003,03 |w (DE-604)BV000905393 |9 2003,03 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010463542 |
Datensatz im Suchindex
_version_ | 1804130190583922688 |
---|---|
any_adam_object | |
author | Bachmaier, Christian Brandenburg, Franz-Josef Forster, Michael |
author_GND | (DE-588)122905660 |
author_facet | Bachmaier, Christian Brandenburg, Franz-Josef Forster, Michael |
author_role | aut aut aut |
author_sort | Bachmaier, Christian |
author_variant | c b cb f j b fjb m f mf |
building | Verbundindex |
bvnumber | BV017358123 |
classification_rvk | SS 5600 |
ctrlnum | (OCoLC)53893960 (DE-599)BVBBV017358123 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01875nam a2200349 cb4500</leader><controlfield tag="001">BV017358123</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030902 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030730s2003 gw ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)53893960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017358123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 5600</subfield><subfield code="0">(DE-625)143571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bachmaier, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radial level planarity testing and embedding in linear time</subfield><subfield code="c">C. Bachmaier ; F. J. Brandenburg ; M. Forster</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="b">Fak. für Math. u.Informatik / Univ. Passau</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">3, 34. S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MIP</subfield><subfield code="v">2003,03</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Every planar graph has a concentric representation based on a breadth first search, see [24]. The vertices are placed on concentric circles and the edges are routed as curves without crossings. Here we take the opposite view. A graph with a given partitioning of its vertices onto k concentric circles is k-radial planar, if the edges can be routed monotonic between the circles without crossings. Radial planarity is a generalisation of level planarity, where the vertices are placed on k horizontal lines. We extend the technique for level planarity tesing of [13, 14, 16-18, 20] and show that radial planarity is decidable in linear time, and that a radial planar embedding can be computed in linear time."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embeddings (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brandenburg, Franz-Josef</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Forster, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122905660</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MIP</subfield><subfield code="v">2003,03</subfield><subfield code="w">(DE-604)BV000905393</subfield><subfield code="9">2003,03</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010463542</subfield></datafield></record></collection> |
id | DE-604.BV017358123 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:17:06Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010463542 |
oclc_num | 53893960 |
open_access_boolean | |
owner | DE-154 DE-739 DE-12 DE-703 DE-91G DE-BY-TUM |
owner_facet | DE-154 DE-739 DE-12 DE-703 DE-91G DE-BY-TUM |
physical | 3, 34. S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Fak. für Math. u.Informatik / Univ. Passau |
record_format | marc |
series | MIP |
series2 | MIP |
spelling | Bachmaier, Christian Verfasser aut Radial level planarity testing and embedding in linear time C. Bachmaier ; F. J. Brandenburg ; M. Forster Passau Fak. für Math. u.Informatik / Univ. Passau 2003 3, 34. S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier MIP 2003,03 Abstract: "Every planar graph has a concentric representation based on a breadth first search, see [24]. The vertices are placed on concentric circles and the edges are routed as curves without crossings. Here we take the opposite view. A graph with a given partitioning of its vertices onto k concentric circles is k-radial planar, if the edges can be routed monotonic between the circles without crossings. Radial planarity is a generalisation of level planarity, where the vertices are placed on k horizontal lines. We extend the technique for level planarity tesing of [13, 14, 16-18, 20] and show that radial planarity is decidable in linear time, and that a radial planar embedding can be computed in linear time." Embeddings (Mathematics) Graph theory Brandenburg, Franz-Josef Verfasser aut Forster, Michael Verfasser (DE-588)122905660 aut MIP 2003,03 (DE-604)BV000905393 2003,03 |
spellingShingle | Bachmaier, Christian Brandenburg, Franz-Josef Forster, Michael Radial level planarity testing and embedding in linear time MIP Embeddings (Mathematics) Graph theory |
title | Radial level planarity testing and embedding in linear time |
title_auth | Radial level planarity testing and embedding in linear time |
title_exact_search | Radial level planarity testing and embedding in linear time |
title_full | Radial level planarity testing and embedding in linear time C. Bachmaier ; F. J. Brandenburg ; M. Forster |
title_fullStr | Radial level planarity testing and embedding in linear time C. Bachmaier ; F. J. Brandenburg ; M. Forster |
title_full_unstemmed | Radial level planarity testing and embedding in linear time C. Bachmaier ; F. J. Brandenburg ; M. Forster |
title_short | Radial level planarity testing and embedding in linear time |
title_sort | radial level planarity testing and embedding in linear time |
topic | Embeddings (Mathematics) Graph theory |
topic_facet | Embeddings (Mathematics) Graph theory |
volume_link | (DE-604)BV000905393 |
work_keys_str_mv | AT bachmaierchristian radiallevelplanaritytestingandembeddinginlineartime AT brandenburgfranzjosef radiallevelplanaritytestingandembeddinginlineartime AT forstermichael radiallevelplanaritytestingandembeddinginlineartime |