Red cell membrane transport in health and disease: with 31 tables
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXVIII, 748 S. graph. Darst. |
ISBN: | 3540442278 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017350351 | ||
003 | DE-604 | ||
005 | 20031008 | ||
007 | t | ||
008 | 030723s2003 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 967492335 |2 DE-101 | |
020 | |a 3540442278 |9 3-540-44227-8 | ||
035 | |a (OCoLC)249003045 | ||
035 | |a (DE-599)BVBBV017350351 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-11 | ||
082 | 0 | |a 612.111 | |
084 | |a WW 8840 |0 (DE-625)152145:13423 |2 rvk | ||
245 | 1 | 0 | |a Red cell membrane transport in health and disease |b with 31 tables |c I. Bernhardt ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2003 | |
300 | |a XXVIII, 748 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Erythrozytenmembran - Membrantransport - Physiologie - Aufsatzsammlung | |
650 | 4 | |a Erythrozytopathie - Pathophysiologie - Aufsatzsammlung | |
650 | 0 | 7 | |a Physiologie |0 (DE-588)4045981-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Membrantransport |0 (DE-588)4038575-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pathophysiologie |0 (DE-588)4044898-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erythrozytenmembran |0 (DE-588)4152965-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erythrozytopathie |0 (DE-588)4277002-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Erythrozytenmembran |0 (DE-588)4152965-0 |D s |
689 | 0 | 1 | |a Membrantransport |0 (DE-588)4038575-9 |D s |
689 | 0 | 2 | |a Physiologie |0 (DE-588)4045981-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Erythrozytopathie |0 (DE-588)4277002-6 |D s |
689 | 1 | 1 | |a Pathophysiologie |0 (DE-588)4044898-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Bernhardt, Ingolf |e Sonstige |4 oth | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010457034&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010457034 |
Datensatz im Suchindex
_version_ | 1804130181950996480 |
---|---|
adam_text | CONTENTS CONTRIBUTING
AUTHORS....................................................................................XXIII
1 DISTRIBUTION AND MOVEMENT OF MEMBRANE
LIPIDS...........................................1 1.1
INTRODUCTION..................................................................................................1
1.1.1 LIPID COMPOSITION, STRUCTURE AND MOTIONS
..........................................1 1.1.2 MEASUREMENTS OF
DISTRIBUTION AND MOVEMENT OF LIPIDS BETWEEN THE MEMBRANE BILAYER
LEAFLETS..............................................3 1.1.3 STEADY
STATE DISTRIBUTION OF LIPIDS BETWEEN THE MEMBRANE BILAYER
LEAFLETS.................................................................................................4
1.1.4 LIPID
DOMAINS......................................................................................5
1.2 NON-MEDIATED PASSIVE TRANSBILAYER MOVEMENTS OF
LIPIDS.........................6 1.2.1 PHOSPHOLIPIDS
.......................................................................................6
1.2.2 CHOLESTEROL AND OTHER NEUTRAL
LIPIDS...................................................7 1.2.3 FATTY
ACIDS: MEDIATED OR NON-MEDIATED MOVEMENT?..........................8 1.3
MEDIATED PASSIVE TRANSBILAYER MOVEMENTS OF LIPIDS
.................................9 1.3.1 CA 2+ -ACTIVATED BIDIRECTIONAL
MOVEMENT OF LIPIDS VIA THE PHOSPHO- LIPID
SCRAMBLASE...................................................................................9
1.3.2 MOVEMENT OF ANIONIC LIPIDS VIA THE ANION EXCHANGER AE1
............11 1.4 MEDIATED OUTWARD MOVEMENT OF NEWLY SYNTHESIZED
PHOSPHATIDYL- CHOLINE
.......................................................................................................12
1.5 ACTIVE TRANSBILAYER MOVEMENTS OF LIPIDS
................................................13 1.5.1 INWARD
MOVEMENTS OF PHOSPHATIDYLSERINE AND PHOSPHATIDYL- ETHANOLAMINE VIA THE
AMINOPHOSPHOLIPID TRANSLOCASE (APLT) ........13 1.5.2 OUTWARD MOVEMENTS
OF LIPIDS VIA THE MULTIDRUG RESISTANCE PROTEIN MRP1 (ABCC1)
....................................................................14
1.6 DISTURBANCE OF DISTRIBUTION AND TRANSBILAYER MOVEMENTS OF MEMBRANE
PHOSPHOLIPIDS IN PATHOLOGY
.......................................................................15
1.7
SUMMARY....................................................................................................16
REFERENCES........................................................................................................17
2 MEMBRANE LIPIDS AND PROTEINS AS A BASIS OF RED CELL SHAPE AND ITS
ALTERATIONS
............................................................................................27
2.1
INTRODUCTION................................................................................................27
2.2 EARLY
HISTORY..............................................................................................28
2.3 EXPERIMENTAL CHANGES OF RESTING SHAPE
...................................................28 2.3.1 OUTLINE OF
OBSERVATIONS......................................................................28
2.3.2 OUTLINE OF THE POSSIBLE ORIGINS OF SHAPE
CHANGES.............................30 2.4 A ROLE FOR THE LIPID BILAYER:
THE BILAYER COUPLE CONCEPT OF SHAPE CHANGES
.....................................................................................................33
2.4.1 UNDERLYING OBSERVATIONS AND
DEFINITION............................................33 2.4.2 SHAPE
CHANGES FOLLOWING ALTERATIONS OF THE TRANSBILAYER BALANCE OF MEMBRANE
LIPIDS...........................................................................36
VIII CONTENTS 2.4.3 SHAPE CHANGES FOLLOWING IN SITU MODIFICATION OF
PHOSPHOLIPID
PATTERNS...............................................................................................37
2.4.4 SHAPE CHANGES ARISING FROM EXPERIMENTALLY INDUCED TRANSBILAYER
REDISTRIBUTION OF ENDOGENOUS PHOSPHOLIPIDS
....................................38 2.5 SHAPE CHANGES OF UNRESOLVED
ORIGIN........................................................40 2.5.1
DEPLETION OF ATP OR MAGNESIUM AND EXPOSURE TO VANADATE ............40
2.5.2 LIGANDS OF BAND 3
PROTEIN..................................................................40
2.5.3 EFFECTS OF GLASS CONTACT AND OF SERUM ALBUMIN
...............................41 2.5.4 PHOSPHOLIPID SYMMETRIZATION
FOLLOWING FIELD PULSE EXPOSURE: A TOOL FOR TESTING THE REQUIREMENT OF
BILAYER ASYMMETRY FOR SHAPE CHANGES OF UNRESOLVED ORIGIN
..........................................41 2.6 FROM THE BILAYER TO A
QUADRILAMINAR MEMBRANE.......................................43 2.6.1
CONSTITUENTS OF THE EXO- AND THE ENDOFACIAL MEMBRANE SURFACE
COAT.......................................................................................43
2.6.2 INFLUENCE OF THE EXOFACIAL LAMINA: SHAPE EFFECTS OF ENZYME
TREATMENT...........................................................................................45
2.6.3 INFLUENCE OF THE ENDOFACIAL LAMINA: THE ROLE OF THE MEMBRANE
SKELETON IN SHAPE TRANSFORMATIONS
...................................................45 2.6.4 SHAPE
EFFECTS OF CYTOPLASMIC PH
......................................................46 2.6.5 INFLUENCE
OF ION GRADIENTS AND TRANSMEMBRANE POTENTIAL.................47 2.6.6
LIMITATION OF SHAPE CHANGES BY THE MEMBRANE SKELETON .................48
2.6.7 MEMBRANE STABILIZATION BY THE SKELETAL NETWORK AND ITS
ALTERATIONS
..............................................................................49
2.7 PATHOLOGICAL ALTERATIONS OF RED CELL SHAPE IN VIVO
...................................49 2.7.1 STOMATOCYTOSIS GOING ALONG
WITH ALTERATIONS OF CELL VOLUME .........50 2.7.2 SHAPE CHANGES DUE TO
ALTERED PROPERTIES OF HAEMOGLOBIN...............50 2.7.3 LIPID-BASED
ALTERATIONS OF CELL
SHAPE...............................................50 2.7.4
PROTEIN-BASED ALTERATIONS OF RED CELL
SHAPE.....................................51 2.8 OUTLOOK
......................................................................................................52
REFERENCES
.......................................................................................................52
3 HUMAN RED CELL SHAPE AND THE MECHANICAL CHARACTERISTICS OF THE
MEMBRANE.........................................................................................................
61 3.1 INTRODUCTION
...............................................................................................61
3.2 CONTINUUM MECHANICS VS. MEMBRANE COMPOSITION
..................................62 3.3 MODES OF MEMBRANE
DEFORMATION.............................................................63
3.3.1 GENERAL
REMARKS................................................................................63
3.3.2 ISOTROPIC OR BIAXIAL DEFORMATION
.......................................................63 3.3.3 SHEAR OR
UNIAXIAL DEFORMATION
..........................................................63 3.3.4
BENDING
DEFORMATION.........................................................................63
3.4 RESTING SHAPE OF MEMBRANE
PATCHES.........................................................64 3.4.1
GENERAL
REMARKS................................................................................64
3.4.2 SURFACE
AREA.......................................................................................64
3.4.3 ASPECT
RATIO.......................................................................................65
3.4.4 SPONTANEOUS CURVATURE
......................................................................65
3.5 MEMBRANE
STIFFNESS...................................................................................66
3.5.1 GENERAL
REMARKS................................................................................66
CONTENTS IX 3.5.2 ISOTROPIC
STIFFNESS...............................................................................66
3.5.3 SHEAR
STIFFNESS....................................................................................67
3.5.4 BENDING STIFFNESS
...............................................................................67
3.6 UNIFORMITY OF THE
MEMBRANE.....................................................................69
3.6.1 GENERAL
REMARKS................................................................................69
3.6.2 SURFACE
AREA.......................................................................................69
3.6.3 ASPECT RATIO
.......................................................................................69
3.6.4 SINGLE-LAYER BASED SPONTANEOUS CURVATURE
......................................69 3.6.5 DOUBLE-LAYER BASED
SPONTANEOUS CURVATURE.....................................70 3.7 RESTING
SHAPES OF RED
CELLS......................................................................70
3.7.1 GENERAL
REMARKS................................................................................70
3.7.2 THE BICONCAVE
DISCOCYTE...................................................................70
3.7.3 ECHINOCYTES AND STOMATOCYTES
...........................................................71 3.7.4
CONCLUSIONS
........................................................................................72
3.8 RELATIVE IMPORTANCE OF SINGLE-LAYER AND DOUBLE-LAYER BASED
SPONTANEOUS
CURVATURE..............................................................................72
3.9 NON-UNIFORM MECHANICAL PROPERTIES OF THE MEMBRANE
............................73 3.9.1 SPHERICAL ECHINOCYTES AND
STOMATOCYTES ...........................................73 3.9.2 EFFECTS
OF RAISING THE CYTOPLASMIC CONCENTRATION OF CALCIUM..........74 APPENDIX
.........................................................................................................74
REFERENCES........................................................................................................80
4 PASSIVE MEMBRANE PERMEABILITY FOR IONS AND THE MEMBRANE
POTENTIAL.....83 4.1
INTRODUCTION................................................................................................83
4.2 SPECIFIC TRANSPORT SYSTEMS FOR MONOVALENT CATIONS IN THE MAMMALIAN
RED CELL
MEMBRANE...................................................................................83
4.3 THE LOW IONIC STRENGTH (LIS)
EFFECT.........................................................87 4.4
THE K + (NA + )/H +
EXCHANGER.....................................................................
....91 4.5 GENERAL CONSIDERATION OF THE RESIDUAL AND LEAK CATION
FLUXES................95 4.6 THE TRANSMEMBRANE POTENTIAL, SURFACE
POTENTIAL, AND THE ELECTRIC FIELD IN THE
MEMBRANE........................................................................................97
4.7 CONCLUSION
...............................................................................................103
REFERENCES......................................................................................................103
5 NA + /K + PUMP
...................................................................................................111
5.1
INTRODUCTION..............................................................................................111
5.2 DEVELOPMENT OF THE CONCEPT OF ACTIVE TRANSPORT
...................................111 5.3 EARLY CHARACTERIZATION OF THE
NA + /K + PUMP IN RED CELLS.........................112 5.4 THE
ENZYMATIC BASIS OF THE NA + /K + PUMP
...............................................114 5.5 RED CELL
CHARACTERISTICS FAVOURABLE FOR THE STUDY OF THE NA + /K + PUMP..115 5.6
TRANSPORT OF NA + AND K + AND THE REACTION MECHANISM OF THE NA + /K +
PUMP..........................................................................
........117 5.6.1 NA + /K + EXCHANGE
..............................................................................118
5.6.2 NA + /NA + EXCHANGE
............................................................................120
5.6.3 K + /K +
EXCHANGE......................................................................
..........121 5.6.4 THE REACTION MECHANISM OF THE NA + /K +
PUMP.................................123 5.7 THE QUATERNARY STRUCTURE OF
THE RED CELL NA + /K + PUMP .........................127 X CONTENTS
5.8 UNRESOLVED ISSUES
....................................................................................129
5.8.1 PROPERTIES OF THE THIRD NA +
SITE........................................................129 5.8.2
SELECTIVITY OF THE CATION BINDING SITES
............................................131 5.8.3 NA + I /H + O
EXCHANGE AND K + O /H + I
EXCHANGE.........................................132 5.8.4 NA +
TRANSPORT COUPLED WITH ANION
TRANSPORT..................................132 5.9
CONCLUSION...............................................................................................133
REFERENCES
.....................................................................................................133
6 ION CHANNELS
...................................................................................................
139 6.1 INTRODUCTION
.............................................................................................139
6.2 THE CA 2+ -ACTIVATED K + CHANNEL
...............................................................139 6.3
THE VOLTAGE-DEPENDENT NON-SELECTIVE CATION
CHANNEL.........................144 6.4 THE LOW CONDUCTANCE K +
CHANNEL..........................................................146 6.5
THE ANION-SELECTIVE
CHANNEL..................................................................146
6.6 WHOLE CELL PATCH-CLAMP RECORDINGS
......................................................147 6.7
CONCLUSION...............................................................................................147
REFERENCES
.....................................................................................................148
7 THE SWELLING-SENSITIVE OSMOLYTE CHANNEL
................................................... 153 7.1
INTRODUCTION
.............................................................................................153
7.2 SWOLLEN TO THE SAME EXTENT, RED CELLS CAN ADOPT DIFFERENT REGULATORY
PATTERNS....................................................................................................154
7.3 RED CELLS WILL ADOPT THE REGULATORY PATTERN THAT MAINTAINS CELL
HOMEOSTASIS
............................................................................................156
7.4 REGULATION OF SWELLING-SENSITIVE, OSMOLYTE
PATHWAYS...........................158 7.4.1 THE OPENING OF OSMOLYTE
PATHWAYS IS CONTROLLED BY IONIC STRENGTH AND IS INSENSITIVE TO CELL
VOLUME EXPANSION ....................159 7.4.2 A SINGLE OR SEVERAL
OSMOLYTE TRANSPORT PATHWAYS?........................161 7.4.3 OPENING OF
THE OSMOLYTE CHANNEL IN RESPONSE TO A GRADUAL AND SLOW DECREASE IN
MEDIUM OSMOLALITY......................................162 7.5
SWELLING-SENSITIVE OSMOLYTE PATHWAYS: ASSOCIATION WITH BAND 3 PROTEIN
.....................................................................................................162
7.5.1 THE ORGANIC OSMOLYTE PATHWAY HAS THE FUNCTIONAL CHARACTERISTICS OF
AN ANION CHANNEL
........................................................................162
7.5.2 THE ORGANIC OSMOLYTE CHANNEL: A PATHWAY FOR
CATIONS..................163 7.5.3 THE SWELLING-SENSITIVE OSMOLYTE
CHANNEL IS ASSOCIATED WITH BAND 3 PROTEIN
(AE1)...............................................................164
7.6 MOLECULAR IDENTIFICATION OF THE SWELLING-SENSITIVE OSMOLYTE
CHANNEL...165 7.7
CONCLUSION...............................................................................................167
REFERENCES
.....................................................................................................168
8 NA + -K + -2CL - COTRANSPORT
................................................................................
173 8.1 INTRODUCTION
.............................................................................................173
8.2 THE NKCC1 PROTEIN
................................................................................174
8.3 NKCC1
ANTIBODIES..................................................................................176
8.4 THE NKCC1 REACTION
CYCLE....................................................................176
8.5 BREADTH OF PHYSIOLOGICAL
FUNCTIONS.........................................................181
CONTENTS XI 8.6 COORDINATE REGULATION OF VOLUME-REGULATORY
TRANSPORTERS ...................182 8.7 CELL VOLUME DETECTION
............................................................................183
8.8 REGULATION OF NKCC
...............................................................................185
8.9 THERMODYNAMIC CONSIDERATIONS
..............................................................186 8.10
FUNCTION OF NKCC IN RED CELLS
............................................................186
REFERENCES......................................................................................................190
9 K + -CL - COTRANSPORT IN VERTEBRATE RED
CELLS.................................................197 9.1
INTRODUCTION..............................................................................................197
9.1.1 HISTORICAL
PERSPECTIVE.......................................................................197
9.1.2 THE LK SHEEP RED
CELL....................................................................198
9.1.3 IONIC REQUIREMENTS AND TRANSPORTER
KINETICS..................................198 9.1.4 MOLECULAR IDENTITY
OF THE K + -CL - COTRANSPORTER ................................199 9.2
PHYSIOLOGICAL CHARACTERISTICS
...................................................................200
9.2.1 VOLUME DEPENDENCE
........................................................................200
9.2.2 H + DEPENDENCE
.................................................................................202
9.2.3
UREA..................................................................................................203
9.2.4 OXYGEN
.............................................................................................203
9.2.5 HYDROSTATIC
PRESSURE.........................................................................204
9.2.6 TEMPERATURE
.....................................................................................204
9.2.7
BICARBONATE.......................................................................................205
9.3 MECHANISM OF
REGULATION........................................................................205
9.3.1 PROTEIN PHOSPHORYLATION
...................................................................205
9.3.2 MACROMOLECULAR CROWDING, ION CONCENTRATION OR MECHANO-
RECEPTION?.........................................................................................207
9.3.3 MAGNESIUM AND ORGANIC
PHOSPHATES................................................208 9.3.4 KCC
AND REDOX POTENTIAL
................................................................209 9.4
FUTURE
PERSPECTIVES..................................................................................210
9.4.1 THE CYTOSKELETON AND REGULATION OF KCC
.......................................210 9.4.2 DIVERSE FUNCTIONS OF
KCC IN RED CELLS AND OTHER TISSUES.............211
REFERENCES......................................................................................................212
10 THE BAND 3 PROTEIN: ANION EXCHANGER AND ANION-PROTON COTRANSPORTER
...............................................................................................221
10.1
INTRODUCTION............................................................................................221
10.2 MEASURING ANION-PROTON
COTRANSPORT....................................................222 10.3
H + -CL - COTRANSPORT AND ITS RELATIONSHIP TO CL - /CL -
EXCHANGE..................225 10.4 MOLECULAR BASIS OF THE RELATIONSHIP
BETWEEN ANION EXCHANGE AND ANION-PROTON
COTRANSPORT...............................................................229
10.5 CHLORIDE EQUILIBRIUM EXCHANGE AND CHLORIDE-PROTON COTRANSPORT:
COMPARISON OF EXPERIMENTAL EVIDENCE WITH THEORETICAL PREDICTIONS ...231
10.6 H + -SO 4 2- COTRANSPORT AND ITS RELATIONSHIP TO H + -CL -
COTRANSPORT: GENERAL FEATURES
....................................................................................237
10.7 THE RELATIONSHIP BETWEEN H + -CL - AND H + -SO 4 2- COTRANSPORT:
SPECIFIC
FEATURES....................................................................................239
10.8 H + -SO 4 2- COTRANSPORT VS. H + -CL - COTRANSPORT: DISCUSSION
.......................242 XII CONTENTS 10.9 CHEMICAL MODIFICATION
OF THE COTRANSPORT PROCESS ...............................244 10.10
SUMMARY..............................................................................................247
APPENDIX
.......................................................................................................248
REFERENCES
.....................................................................................................250
11 BAND 3 MEDIATED TRANSPORT
........................................................................
253 11.1 FUNCTIONS OF BAND 3 AND RELATED
PROTEINS.............................................253 11.2 BASIC
CHARACTERISTICS..............................................................................254
11.2.1 ONE-FOR-ONE EXCHANGE
..................................................................254
11.2.2 DIVALENT VS. MONOVALENT ANION TRANSPORT
.....................................255 11.2.3 BASIC TRANSPORT
MECHANISM * PING-PONG MODEL...........................255 11.2.4
EVIDENCE FOR THE PING-PONG MODEL
................................................259 11.3 ASYMMETRY OF
THE
SYSTEM......................................................................260
11.3.1 SIDEDNESS OF UNLOADED TRANSPORT
SITES..........................................260 11.3.2 EFFECTS OF
CHLORIDE ON SIDEDNESS OF TRANSPORT SITES......................261 11.3.3
EFFECTS OF BICARBONATE ON SIDEDNESS OF TRANSPORT
SITES.................261 11.3.4 CONSEQUENCES OF ASYMMETRY FOR FLUXES
UNDER PHYSIOLOGICAL
CONDITIONS......................................................................................262
11.4 STRUCTURE OF
AE1....................................................................................263
11.4.1 THE CYTOPLASMIC DOMAIN
(CDAE1)................................................263 11.4.2
STRUCTURE OF THE MEMBRANE DOMAIN REVEALED BY ELECTRON MICROSCOPY
....................................................................................264
11.4.3 TOPOLOGY OF THE AE1 MEMBRANE
DOMAIN......................................264 11.4.4 THE FIRST EIGHT
TM SEGMENTS ........................................................265
11.4.5 REMAINING C-TERMINAL SEGMENTS; CONTROVERSIAL
TOPOLOGIES........267 11.5 FROM STRUCTURE TO FUNCTION: INFORMATION FROM
MUTATIONS AND CHEMICAL
LABELLING.........................................................................268
11.5.1 INTERPRETATION OF MUTATION AND CHEMICAL MODIFICATION DATA
.........270 11.5.2 CARBOXYL GROUP MODIFICATION: PUTATIVE IDENTIFICATION
OF PROTON BINDING
SITES..................................................................................271
11.5.3 AMINO GROUP MODIFICATION BY DISULPHONIC
STILBENES...................272 11.5.4 OTHER AMINO-REACTIVE
PROBES........................................................275 11.5.5
HISTIDINE MODIFICATION
...................................................................275
11.5.6 ARGININE
MODIFICATION....................................................................276
11.5.7 CYSTEINE
MODIFICATION....................................................................277
11.5.8 FUNCTIONAL IMPORTANCE OF SERINE AND THREONINE
............................277 11.5.9 PROTEIN FLEXIBILITY AND
CROSS-LINKING............................................277 11.5.10
SENSING OF CHANGES IN AE1 CONFORMATION BY CHEMICAL PROBES..278 11.6
MODEL FOR ANION
EXCHANGE....................................................................280
11.6.1 RESIDUES THAT CROSS THE PERMEABILITY BARRIER (PB) AND/OR BIND
SUBSTRATES.......................................................................................280
11.6.2 EVIDENCE FOR ANION ACCESS CHANNELS IN AE1
................................283 11.6.3 SEPARATE BINDING SITES FOR
HALIDES AND OXYANIONS........................284 11.6.4 STRUCTURAL
NATURE OF THE TRANSPORTING CONFORMATIONAL CHANGE
(TCC)................................................................................286
11.6.5 RELATION TO AE1 STRUCTURE
..............................................................287
CONTENTS XIII 11.6.6 RELATION TO STRUCTURE AND MECHANISM OF OTHER
MEMBRANE TRANSPORT
PROTEINS..........................................................................288
REFERENCES......................................................................................................289
12 AMINO ACID TRANSPORT
.................................................................................303
12.1
INTRODUCTION............................................................................................303
12.2 WHY DO RED CELLS NEED AMINO ACID TRANSPORTERS?
.............................304 12.3 A COMMENT ON METHODOLOGY
................................................................306 12.4
TRANSPORT SYSTEM
NOMENCLATURE............................................................306
12.5 IDENTIFICATION OF RED CELL AMINO ACID TRANSPORT SYSTEMS
...................307 12.6 KINETIC
STUDIES.......................................................................................307
12.7 SYSTEM GLY
.............................................................................................309
12.8 BAND
3....................................................................................................309
12.9 THE HETERODIMERIC AMINO ACID TRANSPORTERS (L, ASC, Y +
L)...................309 12.9.1 SYSTEM
L.........................................................................................310
12.9.2 SYSTEM Y + L
.....................................................................................311
12.10 SYSTEM
ASC.........................................................................................312
12.11 SYSTEM Y +
.............................................................................................312
12.12 SYSTEM
N..............................................................................................312
12.13 SYSTEM T
..............................................................................................313
12.14 SYSTEM GLU
...........................................................................................313
12.15 PHYSIOLOGICAL TRANSPORT RATES FOR AMINO ACIDS
.................................313 12.16 ALTERATIONS OF AMINO ACID
TRANSPORT IN DISEASE STATES ......................315 12.17 CONCLUSION
...........................................................................................316
REFERENCES....................................................................
..................................316 13 EQUILIBRATIVE NUCLEOSIDE
TRANSPORT PROTEINS.............................................321
13.1
INTRODUCTION............................................................................................321
13.2 BIOCHEMICAL STUDIES OF RED CELL NUCLEOSIDE TRANSPORT
PROTEINS..........322 13.2.1 IDENTIFICATION OF THE RED CELL NUCLEOSIDE
TRANSPORTER AS A BAND 4.5
PROTEIN......................................................................322
13.2.2 PRODUCTION OF NUCLEOSIDE TRANSPORTER ANTIBODIES
.........................324 13.2.3 PURIFICATION OF THE HUMAN AND PIG
RED CELL NUCLEOSIDE TRANSPORTERS
...................................................................................324
13.2.4 TRYPTIC CLEAVAGE
STUDIES................................................................325
13.3 CDNA CLONING OF ENT NUCLEOSIDE TRANSPORT
PROTEINS.........................325 13.3.1 CDNA CLONING AND
HETEROLOGOUS EXPRESSION OF RECOMBINANT HUMAN AND RAT
ENT1....................................................................325
13.3.2 CDNA CLONING AND HETEROLOGOUS EXPRESSION OF RECOMBINANT HUMAN AND
RAT
ENT2....................................................................327
13.3.3 OTHER ENT FAMILY
MEMBERS..........................................................328
13.4 MOLECULAR PROPERTIES OF RECOMBINANT MAMMALIAN ENT PROTEINS
........329 13.4.1 ENT MEMBRANE TOPOLOGY
.............................................................329 13.4.2
CHIMERIC STUDIES
............................................................................330
13.4.3 IDENTIFICATION OF AN EXOFACIAL CYSTEINE RESIDUE WITHIN THE RAT
ENT2 TRANSLOCATION
PORE...............................................................330
XIV CONTENTS 13.5 CONCLUSIONS
...........................................................................................332
REFERENCES
.....................................................................................................333
14 GLUCOSE
TRANSPORT........................................................................................
339 14.1 INTRODUCTION
...........................................................................................339
14.2 SPECIFICITY OF SUGAR TRANSPORTERS
..........................................................339 14.3 NET
VS. EXCHANGE TRANSPORT OF
GLUCOSE.................................................340 14.4
MEMBRANE TOPOLOGY OF GLUTS
............................................................342 14.5
EVIDENCE FOR THE 12 TM HELIX MODEL FOR GLUTS
.................................342 14.5.1
TRYPSINOLYSIS..................................................................................342
14.5.2 ANTIBODY
STUDIES............................................................................343
14.5.3 SCANNING MUTAGENESIS STUDIES
.......................................................344 14.5.4
CYSTEINE SCANNING MUTAGENESIS OF TM*S 7, 10 AND 11 EVIDENCE FOR TWO
HYDROPHILIC PORES TRAVERSING GLUT1.............................345
14.5.5 COVALENT LINKAGE OF
INHIBITORS.......................................................346
14.5.6 CONFORMATIONAL CHANGE RESULTING FROM LIGAND
INTERACTIONS.........347 14.5.7 BIOPHYSICAL STUDIES SHOWING * HELICITY
OF THE TRANSMEMBRANE STRANDS
...........................................................................................348
14.6 STRUCTURAL-FUNCTIONAL STUDIES ON GLUTS
..............................................349 14.6.1 FUNCTIONAL
DIFFERENCES BETWEEN THE ISOFORMS GLUT1 AND
GLUT4....................................................................................349
14.6.2 STRUCTURE-FUNCTIONAL COMPARISONS OF GLUTS 1 AND
4...................350 14.6.3 STRUCTURAL BASIS OF SPECIFICITY
DIFFERENCES BETWEEN GLUTS .........351 14.7 PROBLEMS RELATING TO GLUCOSE
TRANSPORT ...............................................352 14.7.1
PROBLEM 1: IS THE CARRIER A ONE MOBILE OR TWO FIXED SITE
TRANSPORTER?...................................................................................352
14.7.2 PROBLEM 2: CAN LIGANDS BIND TO INSIDE AND OUTSIDE SITES
SIMULTANEOUSLY?.............................................................................356
14.7.3 PROBLEM 3: IS GLUT1 AN ASYMMETRIC
TRANSPORTER?......................356 14.8 ATP INTERACTIONS WITH SUGAR
TRANSPORT .................................................358 14.8.1
ATP EFFECTS ON HUMAN
GLUT1.....................................................358 14.8.2 ATP
ON GLUCOSE TRANSPORT IN AVIAN RED CELLS .............................360
14.8.3 STRUCTURAL BASIS FOR ATP INTERACTION WITH GLUT1
........................360 14.9 DRUG INTERACTIONS WITH GLUCOSE
TRANSPORT.............................................361 14.9.1
BARBITURATES
....................................................................................361
14.9.2 GLUCOSE TRANSPORTER DEFICIENCY SYNDROME (GTDS) IN RELATION TO
DRUG ACTION
...............................................................................362
14.9.3 STEROIDS, FLAVONES AND ISOFLAVONES
................................................362 14.9.4 THE L-TYPE
CHANNEL ANTAGONISTS
..................................................363 14.9.5
ANTIPSYCHOTIC
DRUGS........................................................................363
14.9.6 ACTIONS OF HIV PROTEASE INHIBITORS ON
GLUTS..............................363 14.10
CONCLUSIONS..........................................................................................364
REFERENCES
.....................................................................................................365
15 CALCIUM HOMEOSTASIS IN NORMAL AND ABNORMAL HUMAN RED CELLS ........
373 15.1 INTRODUCTION
...........................................................................................373
15.2 METHODOLOGICAL CONSIDERATIONS
.............................................................374
CONTENTS XV 15.3 USE OF INCORPORATED CA 2+
CHELATORS........................................................375
15.4 USE OF CA 2+ IONOPHORES
..........................................................................376
15.5 INHIBITION OF THE CA 2+
PUMP....................................................................376
15.6 CALCIUM HOMEOSTASIS IN PHYSIOLOGICAL CONDITIONS
...............................377 15.6.1 TOTAL AND TOTAL EXCHANGEABLE
CALCIUM CONTENT OF RED CELLS .......377 15.6.2 THE PHYSIOLOGICAL [CA 2+
] I LEVEL ......................................................378
15.6.3 CYTOPLASMIC CA 2+
BUFFERING............................................................379
15.7 PASSIVE CA 2+ TRANSPORT
...........................................................................380
15.8 THE CA 2+ PUMP AND THE PHYSIOLOGICAL PUMP-LEAK TURNOVER OF CA 2+
.....381 15.9 THE V MAX OF THE CA 2+
PUMP......................................................................381
15.10 EFFECTS OF DEOXYGENATION AND PH I ON THE V MAX OF THE CA 2+ PUMP
.........382 15.11 ELEVATED CELL CA 2+ IN EXPERIMENTAL CONDITIONS
...................................383 15.11.1 SECONDARY EFFECTS OF
ELEVATED [CA 2+ ] I...........................................383
15.11.2 EFFECTS OF PHYSIOLOGICAL AGENTS ON THE PERFORMANCE OF THE CA 2+
PUMP IN INTACT RED CELLS............................................385
15.11.3 POPULATION RESPONSE TO INCREASED CA 2+
INFLUX..............................386 15.12 ELEVATED CELL CA 2+ IN
PATHOLOGICAL CONDITIONS.....................................388 15.12.1
MALARIA
.........................................................................................389
15.12.2 SICKLE CELL
ANAEMIA.....................................................................392
15.12.3 THALASSAEMIA
................................................................................395
REFERENCES......................................................................................................396
16 MAGNESIUM
TRANSPORT..................................................................................407
16.1
INTRODUCTION............................................................................................407
16.2 MAGNESIUM HOMEOSTASIS IN RED
CELLS...................................................407 16.3 RED
CELL MAGNESIUM
CONTENT................................................................408
16.3.1 DISTRIBUTION OF MAGNESIUM BETWEEN BOUND AND FREE
FORMS.........408 16.3.2 LEVELS OF FREE IONIZED MAGNESIUM
................................................410 16.3.3 CHANGES IN
MAGNESIUM CONTENT WITH CELL AGE .............................410 16.4
RED CELL MEMBRANE MAGNESIUM PERMEABILITY
......................................412 16.5 IS ACTIVE MAGNESIUM
TRANSPORT NEEDED?..............................................413 16.6
MAGNESIUM TRANSPORT
MECHANISMS.......................................................413
16.7 METHODS FOR INVESTIGATING MAGNESIUM TRANSPORT IN RED CELLS
.............414 16.8 MAGNESIUM TRANSPORT IN HUMAN RED
CELLS...........................................415 16.8.1
SODIUM-DEPENDENT MAGNESIUM
TRANSPORT.....................................415 16.8.2 INHIBITORS OF
SODIUM-DEPENDENT MAGNESIUM TRANSPORT................416 16.8.3
INTERACTIONS BETWEEN SODIUM AND MAGNESIUM ACROSS THE MEMBRANE
......................................................................................416
16.8.4 HOW MANY SODIUM IONS ARE EXCHANGED WITH EACH MAGNESIUM
ION?.............................................................................417
16.8.5 CAN MAGNESIUM EFFLUX OCCUR AGAINST AN ELECTROCHEMICAL
GRADIENT?.....................................................................
...................417 16.8.6 ROLE OF ATP
...................................................................................418
16.8.7 SODIUM-INDEPENDENT MAGNESIUM
EFFLUX........................................418 16.8.8 CHANGES IN
MAGNESIUM TRANSPORT IN DISEASE ................................419 16.9
MAGNESIUM TRANSPORT IN FERRET RED
CELLS.............................................420 16.9.1 MAGNESIUM
EFFLUX FROM FERRET RED CELLS ......................................420
XVI CONTENTS 16.9.2 MAGNESIUM UPTAKE
........................................................................422
16.9.3 TRANSPORT IN MAGNESIUM-LOADED CELLS
..........................................423 16.10 MAGNESIUM TRANSPORT
IN RODENT RED CELLS.........................................423 16.10.1
RAT RED
CELLS................................................................................424
16.10.2 HAMSTER AND GUINEA-PIG RED
CELLS..............................................425 16.11 MAGNESIUM
TRANSPORT IN AVIAN RED
CELLS...........................................426 16.12
CONCLUSIONS..........................................................................................427
REFERENCES
.....................................................................................................429
17 TRACE METAL TRANSPORT
................................................................................
435 17.1 INTRODUCTION
...........................................................................................435
17.2 TRANSPORT SYSTEMS
.................................................................................437
17.2.1 AS FREE METAL (HYDRATED
IONS).......................................................437 17.2.2
TRANSPORT BY BAND 3 AS AN ANIONIC
COMPLEX.................................442 17.2.3 UPTAKE DEPENDENT ON
FORMATION OF METAL-AMINO ACID COMPLEXES
.....................................................................................443
17.3 CONCLUSIONS
...........................................................................................446
REFERENCES
.....................................................................................................447
18 MONOCARBOXYLATE AND OTHER ORGANIC ANION
TRANSPORT............................ 451 18.1 INTRODUCTION
...........................................................................................451
18.2 THREE PATHWAYS FOR MONOCARBOXYLATE TRANSPORT ACROSS THE PLASMA
MEMBRANE OF RED
CELLS.........................................................................452
18.3 NON-IONIC DIFFUSION OF
MONOCARBOXYLATES............................................452 18.4
BAND 3-MEDIATED TRANSPORT OF MONOCARBOXYLATES
................................453 18.5 THE SPECIFIC MONOCARBOXYLATE
TRANSPORTER (MCT1) ............................454 18.5.1 KINETICS
PROPERTIES
.........................................................................454
18.5.2 SUBSTRATE
SPECIFICITY.......................................................................456
18.5.3 INHIBITORS
........................................................................................459
18.6 IDENTIFICATION, CLONING AND SEQUENCING OF THE RED CELL
MONOCARBOXYLATE
CARRIER.......................................................................461
18.7 MCT1 IS A MEMBER OF A FAMILY OF PROTON-LINKED MONOCARBOXYLATE
TRANSPORTERS...........................................................................................463
18.8 TOPOLOGY OF MCT1 AND OTHER MEMBERS OF THE MCT FAMILY
...............464 18.9 STRUCTURE FUNCTION RELATIONSHIPS IN MCT1
...........................................465 18.10 MCT1 IS TIGHTLY
ASSOCIATED WITH THE CELL SURFACE GLYCOPROTEINS GP70 (EMBIGIN) AND CD147
(BASIGIN) ...............................................466 18.11
MONOCARBOXYLATE TRANSPORT INTO MALARIA INFECTED RED
CELLS..............468 18.12
CONCLUSIONS..........................................................................................469
REFERENCES
.....................................................................................................470
19 WATER
PERMEABILITY.......................................................................................
477 19.1 INTRODUCTION
...........................................................................................477
19.2 WATER DIFFUSION THROUGH
LIPIDS.............................................................477
19.3 EVIDENCE FOR DISCRETE PERMEABILITY PATHWAYS
.......................................478 19.4 MOLECULAR IDENTIFICATION
OF WATER CHANNELS..........................................479 19.5 THE
AQUAPORIN
FAMILY...........................................................................480
CONTENTS XVII 19.6 STRUCTURE-FUNCTION
RELATIONSHIPS...........................................................481
19.7 AQUAPORINS AND RED CELLS
.....................................................................484
19.8
SUMMARY................................................................................................485
REFERENCES......................................................................................................485
20 GAS
TRANSPORT...............................................................................................489
20.1
INTRODUCTION............................................................................................489
20.2 BASIC PRINCIPLES OF GAS
TRANSPORT..........................................................489
20.2.1 OXYGEN TRANSPORT: FACTORS AFFECTING HAEMOGLOBIN FUNCTION
.......489 20.2.2 FACTORS AFFECTING CARBON DIOXIDE TRANSPORT AND
EXCRETION IN
BLOOD..........................................................................................491
20.3 CONTROL OF RED CELL
PH..........................................................................493
20.3.1 CONTROL OF RED CELL PH IN THE ABSENCE OF SIGNIFICANT SECONDARILY
ACTIVE CATION OR PROTON TRANSPORT.............................493 20.3.2
EFFECT OF NA + /H + EXCHANGE ON RED CELL PH
...................................494 20.3.3 EFFECT OF K + -CL -
COTRANSPORT ON RED CELL PH .................................497 20.4
ROLES OF PH CHANGES IN REGULATION OF OXYGEN
TRANSPORT.....................498 20.5 RED CELL VOLUME AND HAEMOGLOBIN
OXYGEN AFFINITY...........................499 20.6 INTERACTIONS BETWEEN
MEMBRANE TRANSPORT AND REGULATION OF HAEMOGLOBIN OXYGEN AFFINITY BY
ORGANIC PHOSPHATES ....................500 20.7 PATTERNS OF CARBON
DIOXIDE TRANSPORT AND EXCRETION IN VERTEBRATES.....500
REFERENCES......................................................................................................504
21 *THE HEREDITARY STOMATOCYTOSES AND ALLIED CONDITIONS*: INHERITED
DISORDERS NA + AND K + TRANSPORT
.................................................................511
21.1
INTRODUCTION............................................................................................511
21.2 NORMAL RED CELL CATION TRANSPORT
........................................................511 21.3
HISTORY;
NOSOLOGY..................................................................................512
21.4 TEMPERATURE
EFFECTS...............................................................................513
21.5 CLINICAL ASPECTS
.....................................................................................515
21.6 GENETIC
MAPPING....................................................................................516
21.7 THE STOMATOCYTIC RED CELL
....................................................................516
21.8 THE STOMATIN PROTEIN
.............................................................................517
21.9 POSSIBLE PATHOGENIC MECHANISMS FOR THE
STOMATOCYTOSES.....................518
REFERENCES......................................................................................................520
22 METABOLIC DISORDERS
.....................................................................................525
22.1
INTRODUCTION............................................................................................525
22.2 TO LIVE PERILOUSLY: THE LIFE OF A NORMAL RED
CELL................................527 22.3 THE DAMAGING ROLE OF
HEMICHROMES, FREE HAEM AND FREE IRON..........528 22.4
PATHOPHYSIOLOGICAL CONSEQUENCES OF OXIDANT
DAMAGE.........................532 22.5 G6PD
DEFICIENCY...................................................................................533
22.5.1 STRUCTURE OF NORMAL AND MUTANT
G6PD..........................................533 22.5.2 INTRACELLULAR
REGULATION OF G6PD IN NORMAL AND G6PD- DEFICIENT RED CELLS
........................................................................534
22.5.3 OXIDANT-INDUCED HAEMOLYSIS
.........................................................535 22.5.4 THE
FAVIC CRISIS
.............................................................................535
XVIII CONTENTS 22.5.5 TOXIC COMPONENTS OF FAVA BEANS AND THEIR
HAEMOLYTIC ACTIVITY
..........................................................................................536
22.5.6 OXIDANT STRESS AND CALCIUM
HOMEOSTASIS......................................538 22.5.7
PREDOMINANTLY EXTRAVASCULAR HAEMOLYSIS IN OXIDATIVELY STRESSED
G6PD-DEFICIENT RED
CELLS...............................................539 22.6 RED CELL
ALTERATIONS IN DIABETES MELLITUS
.............................................540 22.6.1 GLYCATION OF
PROTEINS IN
DIABETES...................................................541 22.6.2
FUNCTIONAL EFFECTS OF RED CELL PROTEIN GLYCATION
..........................542 22.6.3 INCREASED PHAGOCYTOSIS OF DIABETIC
RED CELLS: POSSIBLE MECHANISMS
...................................................................................543
22.6.4 ROLE OF RED CELL ALTERATIONS IN DIABETES COMPLICATIONS
...............544 22.7 CONCLUDING REMARKS
.............................................................................544
REFERENCES
.....................................................................................................545
23 SICKLE CELL DISEASE
........................................................................................
549 23.1 INTRODUCTION
...........................................................................................549
23.2 MECHANISMS OF SICKLE RED CELL MEMBRANE DAMAGE
............................549 23.2.1
OXIDATION........................................................................................549
23.2.2 LOSS OF
MEMBRANE..........................................................................550
23.2.3 BINDING OF HB S TO THE INNER
MEMBRANE........................................550 23.3 RED CELL
MEMBRANE STRUCTURAL ABNORMALITIES IN SICKLE CELL DISEASE...550 23.3.1
ALTERED
CYTOSKELETON......................................................................550
23.3.2 ALTERED MEMBRANE LIPID COMPOSITION
..........................................551 23.4 RED CELL MEMBRANE
TRANSPORT ABNORMALITIES IN SICKLE CELL DISEASE...551 23.4.1 K + -CL -
COTRANSPORT
..........................................................................553
23.4.2 CA 2+ -ACTIVATED K + CHANNEL (GARDOS PATHWAY)
...............................554 23.4.3 DEOXYGENATION-INDUCED CATION
FLUXES ..........................................555 23.5 THERAPEUTIC
APPROACHES BASED ON INHIBITION OF SICKLE CELL DEHYDRATION
...........................................................................................556
23.5.1 INHIBITION OF GARDOS
CHANNEL.........................................................556
23.5.2 INHIBITION OF K + -CL - COTRANSPORT
.....................................................557 23.5.3
INHIBITION OF ANION PERMEABILITY
...................................................558 23.5.4 INHIBITION
OF DEOXYGENATION-INDUCED FLUXES.................................558
REFERENCES
.....................................................................................................558
24 THE MEMBRANE PHYSIOLOGY OF THE *MALARIA-INFECTED* RED CELL
............... 569 24.1 INTRODUCTION
...........................................................................................569
24.2 THE INTRAERYTHROCYTIC PHASE OF THE PARASITE LIFE CYCLE
.........................570 24.3 TRANSPORT CHARACTERISTICS OF THE
PARASITISED RED CELL MEMBRANE..........572 24.4 ELECTROPHYSIOLOGICAL
CHARACTERISTICS OF THE PARASITISED RED CELL
MEMBRANE..............................................................................................574
24.5 ROLES AND CONSEQUENCES OF THE ALTERED PERMEABILITY OF THE INFECTED
RED CELL
MEMBRANE...............................................................................576
24.6 THE PARASITOPHOROUS VACUOLE AND PARASITE MEMBRANES
........................578 24.7 CHEMOTHERAPEUTIC OPPORTUNITIES
...........................................................580
REFERENCES
.....................................................................................................581
CONTENTS XIX 25
HYPERTENSION.................................................................................................587
25.1
INTRODUCTION............................................................................................587
25.2 TRANSPORTERS INVOLVED IN ABNORMAL MONOVALENT ION HANDLING IN
EXPERIMENTAL MODELS OF PRIMARY HYPERTENSION
................................588 25.2.1 NA + /K +
PUMP..........................................................................
.........588 25.2.2 NA + -K + -2CL - COTRANSPORT
.................................................................589
25.2.3 NA + /H + EXCHANGE
............................................................................589
25.2.4 OTHER ION TRANSPORT
PATHWAYS........................................................590 25.3
ION TRANSPORTERS IN ESSENTIAL HYPERTENSION
...........................................590 25.3.1 NA + -K + -2CL -
COTRANSPORT
.................................................................591
25.3.2 NA + /LI + COUNTERTRANSPORT VS. NA + /H +
EXCHANGE...............................591 25.4 ARE ABNORMALITIES OF RED
CELL ION TRANSPORTERS IN PRIMARY HYPERTENSION GENETICALLY
DETERMINED?.................................................592 25.5
ROLE OF ION TRANSPORTERS EXPRESSED IN RED CELLS IN BLOOD PRESSURE
REGULATION..............................................................................................593
25.6 EVIDENCE FOR THE INVOLVEMENT OF ION TRANSPORT ABNORMALITIES IN THE
PATHOGENESIS OF
HYPERTENSION......................................................594
25.7 MOLECULAR DETERMINANTS OF ABNORMAL ION TRANSPORT IN
HYPERTENSION..595 25.8 CONCLUSION AND FUTURE
DIRECTIONS..........................................................597
REFERENCES......................................................................................................598
26 DISORDERS OF BAND
3......................................................................................603
26.1
INTRODUCTION............................................................................................603
26.2 ERYTHROID PHENOTYPES WITH PARTIAL DEFICIENCY OF BAND 3
......................603 26.2.1 AUTOSOMAL DOMINANT SPHEROCYTOSIS WITH
BAND 3 DEFICIENCY .......603 26.2.2 AUTOSOMAL DOMINANT SPHEROCYTOSIS
WITH PROTEIN 4.2
DEFICIENCY......................................................................................605
26.2.3 AUTOSOMAL RECESSIVE SPHEROCYTOSIS WITH PROTEIN 4.2
DEFICIENCY......................................................................................605
26.3 ERYTHROID PHENOTYPES WITH COMPLETE ABSENCE OF BAND
3.....................606 26.3.1 SEVERE HUMAN AUTOSOMAL RECESSIVE
HAEMOLYTIC ANAEMIA ..........606 26.3.2 MOUSE BAND 3 MUTANTS AND
KNOCKOUTS..........................................606 26.3.3 SEVERE
SPHEROCYTIC HAEMOLYTIC ANAEMIA IN A STEER ......................607
26.3.4 PHENOTYPE OF CONGENITAL DYSERYTHROPOIETIC ANAEMIA IN ZEBRAFISH
....................................................................................607
26.4 OTHER ERYTHROID PHENOTYPES CAUSED BY BAND 3
MUTATIONS....................608 26.4.1 SOUTHEAST ASIAN OVALOCYTOSIS
........................................................608 26.4.2
HEREDITARY ACANTHOCYTOSIS
.............................................................609 26.4.3
BLOOD GROUP ANTIGENS CARRIED BY BAND 3
.....................................609 26.5 NON-ERYTHROID PHENOTYPES
CAUSED BY BAND 3 MUTATIONS .....................610 26.5.1 AUTOSOMAL
DOMINANT DISTAL RENAL TUBULAR ACIDOSIS ....................610 26.5.2
AUTOSOMAL RECESSIVE DISTAL RENAL TUBULAR ACIDOSIS
....................612 26.6 CONCLUSION
.............................................................................................613
REFERENCES......................................................................................................613
27 AMINO ACID TRANSPORT IN DISEASE
...............................................................621
27.1
INTRODUCTION............................................................................................621
XX CONTENTS 27.2 MEASUREMENT OF TRANSPORT KINETICS IN RED CELLS
..................................622 27.2.1 TRANSPORT SYSTEMS AND
TRANSPORTERS ..............................................622 27.2.2
ROLE OF L-ARGININE TRANSPORT IN NITRIC OXIDE PRODUCTION .............622
27.3 URAEMIA, PATHOPHYSIOLOGY AND
TREATMENT.............................................623 27.3.1
TRANSPORT ALTERATIONS IN
URAEMIA...................................................624 27.3.2
L-ARGININE TRANSPORT AND
URAEMIA................................................624 27.3.3
POSSIBLE MECHANISMS EXPLAINING THE INCREASED Y + TRANSPORT ACTIVITY IN
URAEMIA........................................................................627
27.4 CHRONIC HEART FAILURE
............................................................................629
27.4.1 L-ARGININE-NO PATHWAY AND HEART FAILURE
...................................629 27.4.2 AMINO ACID PLASMA PROFILE
IN CHRONIC HEART FAILURE....................630 27.4.3 ALTERATIONS ON
L-ARGININE TRANSPORT IN CHRONIC HEART FAILURE......631 27.5 POSSIBLE
OVERLAPPING OF MECHANISMS PRESENT IN BOTH CHRONIC HEART FAILURE AND
URAEMIA
..............................................................................632
27.6 L-ARGININE TRANSPORT ALTERATIONS IN DIABETES
.......................................633 27.7 L-ARGININE TRANSPORT AND
SEPSIS...........................................................634
27.8 AMINO ACID TRANSPORT ALTERATIONS IN SICKLE CELL DISEASE
....................634 REFERENCES
.....................................................................................................635
28 TRANSGENIC MODELS OF RED CELL
DISORDERS.................................................. 643 28.1
INTRODUCTION
...........................................................................................643
28.2 PRODUCTION OF GENETICALLY MODIFIED
ANIMALS........................................643 28.2.1 CONVENTIONAL
TRANSGENESIS.............................................................644
28.2.2 GENE
TARGETING...............................................................................645
28.2.3 TISSUE-SPECIFIC GENE TARGETING
.....................................................649 28.3 TRANSGENIC
MODELS OF RED CELL MEMBRANE DISORDERS...........................649
28.3.1 HEREDITARY SPHEROCYTOSIS
...............................................................650
28.3.2 HEREDITARY
ELLIPTOCYTOSIS/PYROPOIKILOCYTOSIS.................................653
28.4 TRANSGENIC MODELS OF RED CELL TRANSPORT DISORDERS
............................654 28.4.1 GRADIENT-DRIVEN SYSTEMS
...............................................................655
28.4.2 STOMATOCYTOSIS
...............................................................................656
28.5 TRANSGENIC MODELS OF OTHER RED CELL
DISORDERS...................................656 28.5.1 SICKLE CELL
DISEASE.........................................................................657
28.5.2
HAEMOGLOBINOPATHIES.....................................................................658
28.5.3 THE HAEMOPHILIAS
..........................................................................659
28.5.4 METABOLIC DISORDERS
.......................................................................660
28.6 GROWTH AND DIFFERENTIATION
DEFECTS.......................................................661 28.6.1
THE ERYTHROPOIETIN AND THE ERYTHROPOIETIN RECEPTOR
.....................662 28.6.2 THE ERYTHROID-SPECIFIC GATA
TRANSCRIPTION FACTORS....................663 28.6.3 ERYTHROID
KRUPPEL-LIKE
FACTOR.......................................................665
REFERENCES
.....................................................................................................666
29 RED CELL AGEING
............................................................................................
673 29.1 INTRODUCTION: THE PROPERTIES OF MAMMALIAN RED CELLS
..........................673 29.2 RED CELL AGEING IN
MAMMALS................................................................675
29.3 PROPERTIES OF HUMAN RED CELLS OF DIFFERENT DENSITY
............................677 29.4 PREPARATION OF RED CELLS OF
WELL-DEFINED CELL AGE..............................680 CONTENTS XXI
29.5 THE AGEING OF RED CELLS
REINVESTIGATED...............................................683 29.6
RED CELL STORAGE IN BLOOD BANKS
..........................................................685
REFERENCES......................................................................................................687
30 ACTIVE AND PASSIVE MONOVALENT ION TRANSPORT ASSOCIATION WITH MEMBRANE
ANTIGENS IN SHEEP RED CELLS: A MOLECULAR RIDDLE.........691 30.1
INTRODUCTION: A WELL-ESTABLISHED CELLULAR MODEL
..................................691 30.2 CATION POLYMORPHISM THROUGH
PUMPS AND *LEAKS* ..............................692 30.2.1 NA + /K +
PUMPS
.................................................................................693
30.2.2
*LEAKS*...........................................................................................694
30.2.3 AN INTEGRATED VIEW
........................................................................701
30.3 M AND L MEMBRANE ANTIGEN/ANTIBODY POLYMORPHISM
.........................701 30.3.1 GENETIC
BASIS..................................................................................701
30.3.2 MOLECULAR PROPERTIES OF THE M/L
ANTIGENS.....................................702 30.3.3 THE M/L
ANTIBODIES
.......................................................................705
30.4 FUNCTIONAL ASSOCIATION OF ANTIGENS WITH *PUMPS AND LEAKS*
..............706 30.4.1 NA + /K + PUMP ACTIVATION BY THE L P
ANTIBODY..................................706 30.4.2 K + -CL -
COTRANSPORT INHIBITION BY THE L L ANTIBODY...........................707
30.4.3 COMPLEMENT-MEDIATED HAEMOLYSIS BY ANTI-M AND ANTI-L...........708
30.5 CLONAL VS. MATURATIONAL CHANGES OF TRANSPORTERSAND
ANTIGENS.............709 30.5.1 CLONAL CELLULAR CHANGES IN
LAMBS.................................................709 30.5.2
RETICULOCYTE MATURATION IN ANAEMIC
SHEEP...................................710 30.6 OVERALL PHYSIOLOGICAL
CONSEQUENCES AND THE HK/LK DIMORPHISM ......711 30.7 MEMBRANE ANTIGENS
AND TRANSPORT IN SPECIES OTHER THAN RUMINANTS ..711
REFERENCES....................................................................
..................................712 31 COMPARATIVE PHYSIOLOGY OF RED
CELL MEMBRANE TRANSPORT ....................721 31.1
INTRODUCTION............................................................................................721
31.2 CARNIVORES * DOG AND
CAT......................................................................722
31.3 HERBIVORES * HORSE AND
DEER.................................................................724
31.4 RODENTS * MOUSE AND RAT
......................................................................725
31.5 LOWER
VERTEBRATES..................................................................................726
31.5.1 BIRDS
...............................................................................................726
31.5.2
AMPHIUMA......................................................................................727
31.6 CONCLUSION
.............................................................................................728
REFERENCES......................................................................................................729
INDEX
...................................................................................................................735
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV017350351 |
classification_rvk | WW 8840 |
ctrlnum | (OCoLC)249003045 (DE-599)BVBBV017350351 |
dewey-full | 612.111 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.111 |
dewey-search | 612.111 |
dewey-sort | 3612.111 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02043nam a2200505 c 4500</leader><controlfield tag="001">BV017350351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031008 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030723s2003 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">967492335</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540442278</subfield><subfield code="9">3-540-44227-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249003045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017350351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.111</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 8840</subfield><subfield code="0">(DE-625)152145:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Red cell membrane transport in health and disease</subfield><subfield code="b">with 31 tables</subfield><subfield code="c">I. Bernhardt ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 748 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erythrozytenmembran - Membrantransport - Physiologie - Aufsatzsammlung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erythrozytopathie - Pathophysiologie - Aufsatzsammlung</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Membrantransport</subfield><subfield code="0">(DE-588)4038575-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pathophysiologie</subfield><subfield code="0">(DE-588)4044898-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erythrozytenmembran</subfield><subfield code="0">(DE-588)4152965-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erythrozytopathie</subfield><subfield code="0">(DE-588)4277002-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erythrozytenmembran</subfield><subfield code="0">(DE-588)4152965-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Membrantransport</subfield><subfield code="0">(DE-588)4038575-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Erythrozytopathie</subfield><subfield code="0">(DE-588)4277002-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Pathophysiologie</subfield><subfield code="0">(DE-588)4044898-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bernhardt, Ingolf</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010457034&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010457034</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV017350351 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:16:57Z |
institution | BVB |
isbn | 3540442278 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010457034 |
oclc_num | 249003045 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-11 |
physical | XXVIII, 748 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
spelling | Red cell membrane transport in health and disease with 31 tables I. Bernhardt ... (eds.) Berlin [u.a.] Springer 2003 XXVIII, 748 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Erythrozytenmembran - Membrantransport - Physiologie - Aufsatzsammlung Erythrozytopathie - Pathophysiologie - Aufsatzsammlung Physiologie (DE-588)4045981-0 gnd rswk-swf Membrantransport (DE-588)4038575-9 gnd rswk-swf Pathophysiologie (DE-588)4044898-8 gnd rswk-swf Erythrozytenmembran (DE-588)4152965-0 gnd rswk-swf Erythrozytopathie (DE-588)4277002-6 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Erythrozytenmembran (DE-588)4152965-0 s Membrantransport (DE-588)4038575-9 s Physiologie (DE-588)4045981-0 s DE-604 Erythrozytopathie (DE-588)4277002-6 s Pathophysiologie (DE-588)4044898-8 s Bernhardt, Ingolf Sonstige oth SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010457034&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Red cell membrane transport in health and disease with 31 tables Erythrozytenmembran - Membrantransport - Physiologie - Aufsatzsammlung Erythrozytopathie - Pathophysiologie - Aufsatzsammlung Physiologie (DE-588)4045981-0 gnd Membrantransport (DE-588)4038575-9 gnd Pathophysiologie (DE-588)4044898-8 gnd Erythrozytenmembran (DE-588)4152965-0 gnd Erythrozytopathie (DE-588)4277002-6 gnd |
subject_GND | (DE-588)4045981-0 (DE-588)4038575-9 (DE-588)4044898-8 (DE-588)4152965-0 (DE-588)4277002-6 (DE-588)4143413-4 |
title | Red cell membrane transport in health and disease with 31 tables |
title_auth | Red cell membrane transport in health and disease with 31 tables |
title_exact_search | Red cell membrane transport in health and disease with 31 tables |
title_full | Red cell membrane transport in health and disease with 31 tables I. Bernhardt ... (eds.) |
title_fullStr | Red cell membrane transport in health and disease with 31 tables I. Bernhardt ... (eds.) |
title_full_unstemmed | Red cell membrane transport in health and disease with 31 tables I. Bernhardt ... (eds.) |
title_short | Red cell membrane transport in health and disease |
title_sort | red cell membrane transport in health and disease with 31 tables |
title_sub | with 31 tables |
topic | Erythrozytenmembran - Membrantransport - Physiologie - Aufsatzsammlung Erythrozytopathie - Pathophysiologie - Aufsatzsammlung Physiologie (DE-588)4045981-0 gnd Membrantransport (DE-588)4038575-9 gnd Pathophysiologie (DE-588)4044898-8 gnd Erythrozytenmembran (DE-588)4152965-0 gnd Erythrozytopathie (DE-588)4277002-6 gnd |
topic_facet | Erythrozytenmembran - Membrantransport - Physiologie - Aufsatzsammlung Erythrozytopathie - Pathophysiologie - Aufsatzsammlung Physiologie Membrantransport Pathophysiologie Erythrozytenmembran Erythrozytopathie Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010457034&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bernhardtingolf redcellmembranetransportinhealthanddiseasewith31tables |