Constantin Carathéodory: mathematics and politics in turbulent times
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Schlagworte: | |
Online-Zugang: | Rezension Inhaltsverzeichnis |
Beschreibung: | XXVIII, 651 S. Ill., graph. Darst., Portr. 24 cm |
ISBN: | 3540442588 3540203524 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017347992 | ||
003 | DE-604 | ||
005 | 20050317 | ||
007 | t | ||
008 | 030723s2004 adc| |||| 00||| eng d | ||
016 | 7 | |a 969862571 |2 DE-101 | |
020 | |a 3540442588 |9 3-540-44258-8 | ||
020 | |a 3540203524 |9 3-540-20352-4 | ||
035 | |a (OCoLC)52623790 | ||
035 | |a (DE-599)BVBBV017347992 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-19 |a DE-12 |a DE-355 |a DE-29 |a DE-M352 |a DE-210 |a DE-703 |a DE-634 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA29.C35 | |
082 | 0 | |a 510/.92 |2 22 | |
084 | |a SG 130 |0 (DE-625)143047:13594 |2 rvk | ||
084 | |a 708500 Carathéodory, Constantin*by*ob |2 sbb | ||
100 | 1 | |a Geōrgiadou, Maria |e Verfasser |4 aut | |
245 | 1 | 0 | |a Constantin Carathéodory |b mathematics and politics in turbulent times |c Maria Georgiadou |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a XXVIII, 651 S. |b Ill., graph. Darst., Portr. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
600 | 1 | 4 | |a Carathéodory, Constantin <1873-1950> |
600 | 1 | 4 | |a Carathéodory, Constantin <1873-1950> |
600 | 1 | 7 | |a Carathéodory, Constantin |d 1873-1950 |0 (DE-588)118667076 |2 gnd |9 rswk-swf |
650 | 4 | |a Mathématiciens - Grèce - Biographies | |
650 | 4 | |a Mathematicians |z Greece |v Biography | |
651 | 4 | |a Griechenland | |
655 | 7 | |0 (DE-588)4006804-3 |a Biografie |2 gnd-content | |
689 | 0 | 0 | |a Carathéodory, Constantin |d 1873-1950 |0 (DE-588)118667076 |D p |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |u https://www.recensio.net/r/9f2537163df517c34bf5c76ff8002b6b |y rezensiert in: Südost-Forschungen, 69/70 (2010/2011), S. 637-639 |3 Rezension |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010456418&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n DHB | |
940 | 1 | |n by | |
940 | 1 | |n oe | |
940 | 1 | |q DHB_BSB_DDC1 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010456418 | ||
942 | 1 | 1 | |c 509 |e 22/bsb |f 0904 |g 43 |
Datensatz im Suchindex
_version_ | 1804130180917100544 |
---|---|
adam_text | Contents
CHAPTER I
Origin and Formative Years
ι
.
ι
From Chios to
Livorno
and Marseille
................................
ι
ι
.2
The
Carathéodorys
in the Ottoman Empire
........................... 3
1.3
Stephanos
Carathéodory,
the Father
................................. 5
1.4
Early Years in Belgium
............................................ 7
1.5
The Graeco-Turkish War of
1897...................................
n
1.6
With the British Colonial Service in Egypt
........................... 14
1.7
Studies in Berlin
.................................................. 19
1.8
The German University
............................................ 23
1.9
Friends in
Göttingen
............................................... 23
1.10
Connections with Klein and Hubert
................................. 26
1.1
1
Doctorate: Discontinuous Solutions in the Calculus of Variations
....... 31
1.12
The Third International Congress of Mathematicians
.................. 36
1.13
A Visit to Edinburgh
............................................... 38
1.14
Habilitation
in
Göttingen
........................................... 39
1.15
Lecturer in
Göttingen
.............................................. 40
CHAPTER
2
Academic Career in Germany
2.1
Habilitation
(again) in Bonn
........................................ 45
2.2
Axiomatic Foundation of Thermodynamics
.......................... 47
2.3
Marriage, a Family Affair
.......................................... 51
2.4
First Professorship in Hannover
..................................... 57
2.5
Professor at the Royal Technical University of
Breslau................ 61
2.6
Theory of Functions
............................................... 63
2.6.1
The
Picard
Theorem
......................................... 63
2.6.2
Coefficient Problems
......................................... 66
2.6.3
The
Schwarz
Lemma
........................................ 68
2.6.4
Conformai
Mapping
......................................... 72
2.6.4.1
Existence Theorems
.................................. 72
2.6.4.2
Variable Domains
..................................... 74
2.6.4.3
Mapping of the Boundary
............................. 77
XXIV Contents
2.6.5
Normal Families
............................................. 8o
2.6.6
Functions of Several Variables
................................ 82
2.7
Elementary Radiation Theory
....................................... 84
2.8
Venizelos Calls
Carathéodory
to Greece
............................. 87
2.9
Carathéodory
Succeeds Klein in
Göttingen
........................... 90
2.10
On the Editorial Board of the
Mathematische Annalen................
93
2.1
1
War
.............................................................. 96
2.12
Famine
...........................................................
l0°
2.13
Insipid Mathematics
............................................... 100
2.14
German Science and its Importance
............................... 101
2.15
Einstein Contacts
Carathéodory
..................................... 102
2.16
The Theory of Relativity in its Historical Context
..................... 104
2.17
Functions of Real Variables
........................................ 107
2.17.1
Theory of Measure
.......................................... 107
2.17.2
One-to-One Mapping
........................................ 108
2.17.3
Carathéodory s
Books on Real Functions
...................... 109
2.17.4
The Book on Algebraic Theory of Measure and Integration
..... 112
2.17.5
Correspondence with
Rado
on Area Theory
.................... 113
2.18
Doctoral Students in
Göttingen
..................................... 116
2.19
Succeeded by Erich
Hecke
in
Göttingen
............................. 116
2.20
Professor in Berlin
................................................ 117
2.21
Geometry
........................................................ 120
2.22
Supervision of Students
............................................ 123
2.23
Applied Mathematics as a Consequence of War
...................... 124
2.24
Collapse of Former Politics
......................................... 125
2.25
Member of the Prussian Academy of Sciences
........................ 127
2.26
Supporting Brouwer s Candidacy
................................... 128
2.27
Carathéodory s
Successor in Berlin
................................. 129
2.28
The Nelson Affair
............................................... 131
chapter
3
The Asia-Minor Project
3.1
Preliminaries to the Greek National Adventure
....................... 137
3.2
The Greek Landing in Smyrna and the Peace Treaty of
Sèvres
......... 140
3.3
Smyrna, a Cosmopolitan City
....................................... 143
3.4
Projet d une nouvelle Université en Grèce
......................... 146
3.5
Founding the Ionian University
..................................... 150
3.6
The High Commissioner s Decree
................................... 153
3.7
The Development of the Ionian University
........................... 154
3.8
A Castle in the Air
............................................... ^4
3.9
The Asia-Minor Disaster and the End of the Ionian University
......... 165
3.10
Fleeing from Smyrna to Athens
..................................... 168
3.11
Professor in Athens
................................................
I7o
3.12
The Lausanne Treaty: Defeat of the Great Idea
....................... 174
Contents XXV
3.13
The Refugees
..................................................... 176
3.14
Carathéodory s
Report to Henry Morgenthau
......................... 178
3.15
In the Hope of Venizelos s Return
................................... 180
CHAPTER
4
A Scholar of World Reputation
4.1
Appointment to Munich University
.................................. 183
4.2
Life in Munich
.................................................... 187
4.3
Planning an Institute of Physics at Athens University with Millikan
.... 191
4.4 Reichenbach
and the Berlin Circle
.................................. 196
4.5
Suggestions to Hubert on Quantum Mechanics
....................... 200
4.6
Calculus of Variations
............................................. 202
4.6.1
General Theory
.............................................. 202
4.6.2
Multiple Integrals
............................................ 207
4.6.3
Carathéodory s
Book on the Calculus of Variations
and Partial Differential Equations
.............................. 212
4.6.4
Control Theory, Dynamic Programming
and Pontryagin s Principle
.................................... 215
4.6.5
Viscosity Solutions to Hamilton-Jacobi PDEs
.................. 216
4.7
Member of the Academy of Athens
................................. 217
4.8
Caring for Munich s Scientific Life
................................. 219
4.9
First Visiting Lecturer of the American Mathematical Society
.......... 220
4.10
Hindered by the Bavarian Ministry of Finances
....................... 220
4.11
At the University of Pennsylvania
................................... 222
4.12
At Harvard
....................................................... 222
4.13
At Princeton
...................................................... 223
4.14
An Excellent Man but not to be Appointed
......................... 224
4.15
The Bochner Case
............................................... 226
4.16
At Austin and San Antonio
......................................... 228
4.17
Impressions of America
............................................ 228
4.18
A Great Catch : Appointment to a Full Professorship of Mathematics
at Stanford University
............................................. 229
4.19
Carathéodory
Negotiates to Remain in Munich
....................... 231
4.20
Carathéodory
and
Rado
............................................ 233
4.21
A Pack of Wolves
............................................... 235
4.22
Carathéodory s
View of
Rosenthal.................................. 242
4.23
Works of Art for Delta
............................................. 243
4.24
Honour to
Schmidt-Ott............................................ 244
4.25
Expecting a New Mission in Greece
................................. 245
4.26
Venizelos Calls
Carathéodory
to Rescue the Greek Universities
........ 249
4.27
Carathéodory s
Report
............................................. 253
4.28
In
Thessaloniki
................................................... 255
4.29
The Crown of Thorns
............................................ 257
4.30
Commissioner of the Greek Government
............................ 259
XXVI Contents
4.31
Undesirable Reform
............................................... 262
4.32
Academic Contacts in Greece
...................................... 263
4.33
Goethe: A Graeco-German Bridge
.................................. 266
4.34
A Timely Overview of Mathematics
................................. 267
4.35
Neugebauer,
Courant,
Springer
..................................... 268
4.36
At the International Congress of Mathematicians in Zurich
............ 269
4.37
Mechanics
........................................................ 273
CHAPTER
5
National Socialism and War
5.1 Gleichschaltung .................................................
275
5.2
Carathéodory s
Friends: Victims of the
1933
Racial Laws
............. 278
5.3
Member of the Reform Committee
................................ 288
5.4
Three Incorrigible Opponents
..................................... 290
5.5
Recommending Ernst Mohr
........................................ 292
5.6
The Reich Ministry of Education and the Lecturers Corporation
....... 293
5.7
Persecutions and Resignations in
1934.............................. 294
5.8
Under Observation and Judgement
.................................. 296
5.9
A Catholic or an Orthodox?
........................................ 296
5.10
In Pisa
........................................................... 297
5.11
Honorary President of the Inter-Balkan Congress of Mathematicians
... 297
5.12
Nuremberg Laws and New Measures
................................ 299
5.13
In Bern and Brussels
............................................... 301
5.14
Member of the International Commission of Mathematicians
.......... 302
5.15
Protest
........................................................... 304
5.16
Carathéodory s
View of
Damköhler................................. 305
5.17
Despina
Leaves Munich for Athens
................................. 305
5.18
On the Present State of the German Universities
.................... 309
5.19
Carathéodory
Meets Tsaldaris at Tegernsee
.......................... 310
5.20
Corresponding Member of the Austrian Academy of Sciences
......... 313
5.21
Expecting the War- On the Political Situation in Europe and Greece
... 313
5.22 4
August
1936:
Dictatorship in Greece
.............................. 314
5.23
The Oslo Congress: awarding the First Fields Medals
................. 317
5.24
Against an International Congress of Mathematicians in Athens
........ 323
5.25
Invitation to the University of Wisconsin
............................. 323
5.26 Carl Schurz
Professor at the University of Wisconsin
................. 327
5.27
Support for
Blumenthal............................................ 328
5.28
Pontifical Academician
............................................ 329
5.29
Geometric Optics
................................................. 334
5.29.1
The Book
.................................................. 334
5.29.2
The Schmidt Mirror Telescope
............................... 335
529.3
Correspondence with the Imperial Chemical Industries
on the Schmidt Mirror Systems
............................... 338
5.30
Nazi Measures and Laws in
1937................................... 341
Contents XXVII
5.3
1
The Wandering Jew
............................................. 343
5.32
Graeco-German Relations Before the War
........................... 343
5.33
Archaeological Interest
............................................ 344
5.34
A Symbol of German-Greek Contact
.............................. 348
5.35
Release from Civil Service
-
Flexible in Surviving
.................... 349
5.36
Honorary Professor of the University of Athens
...................... 352
5.37
The Fate of the Last Remaining Friends
............................. 352
5.38
Dispute about
Carathéodory s
Successor
............................. 354
5.38.1
The Persons Involved
........................................ 354
5.38.2
The Lists Submitted
......................................... 356
5.38.3
The Successful Candidate
.................................... 362
5.39
Despina s Wedding
................................................ 363
5.40
Two Trips Cancelled Because of the War
............................ 366
5.41
Decline in Quality
................................................. 367
5.42
Carathéodory
and the Cartan Family
-
Germany Occupies France
...... 368
5.43
Favouring
Weizsäcker s
Appointment in Munich
..................... 369
5.44
Sommerfeld s Successor
........................................... 371
5.45
Greece underGerman Occupation
(1941-1944)...................... 374
5.46
International Science Restructuring
................................. 377
5.47
Mediating for Saltykow s Release
................................... 379
5.48
Unable to Rescue
Schauder........................................ 380
5.49
Papal Audience in Rome
........................................... 383
5.50
Why Should Every Philistine Know who Hubert was?
................ 385
5.51
Summer Vacations in the Black Forest
............................... 388
5.52
An Unrealised Plan to Visit Finland and the Rosenberg Report
on
Carathéodory
.................................................. 389
5.53
Munich in Wartime
-
Contact with Leipzig and Freiburg
.............. 395
5.54
Endeavours to Save German Science
.............................. 396
5.54.1
In Favour of van
der Waerden s
Stay in Germany
............... 396
5.54.2 Von Laue s
Acknowledgement
............................... 397
5.54.3
Steck s Exclusion from Lambert s Edition
..................... 397
5.54.4
In the Jury for a Prize in Geometry
........................... 399
5.55
Bombardments of Munich
.......................................... 399
5.56
Denunciations
.................................................... 400
5.56.1
Mohr
...................................................... 400
5.56.2
The
Hopf
Family
........................................... 401
5.57
A Reich Institute for Mathematics
.................................. 402
5.58
Munich in the Autumn of
1944..................................... 403
5.59
In the Interest of the Union
....................................... 404
5.60
An Unlikely Captive
............................................... 405
5.61
Euphrosyne s Illness and Air Raids
................................. 407
5.62
Collected Mathematical Writings
................................... 407
5.63
Denazification
.................................................... 412
5.64
A Reasonable Compromise
....................................... 418
XXVIII
Contents
CHAPTER
6
The Final Years
6.1
Consequences of War
.............................................. 421
6.2
Carathéodory
and the Mathematical Institute in Oberwolfach:
Reconstruction
....................................................
423
6.3
In Zurich: Family and Friends
...................................... 428
6.4
Attempts to Leave Germany for Greece
.............................. 429
6.5
Contacts with Americans
...........................................
432
6.6
Widowed and Fatally Diseased
..................................... 435
6.7
Theory of Functions and
Carathéodory s
Last Doctoral Student
........
4З8
6.8
Born s Natural Philosophy of Cause and Chance
..................... 439
6.9
The First Post-War International Congress of Mathematicians
.......... 439
6.10
Death
............................................................ 441
6.11
Carathéodory s
Library
............................................ 444
Epilogue
.............................................................. 449
Appendix I Some Explanations concerning the Text
..................... 457
Appendix II A Short Biographical Sketch of the
Carathéodory
Family
..... 461
Appendix III Chronology
.............................................. 465
Appendix IV
Carathéodory s
Fields of Study and Contributions
bearing his Name
......................................... 473
Appendix V A List of
Carathéodory s
Students
.......................... 477
Notes
................................................................. 483
Bibliography
.......................................................... 601
A.
Carathéodory s
Works
............................................. 601
B. Selected Bibliography
............................................. 602
Name Index
........................................................... 609
Geographic Index
...................................................... 625
Subject Index
.......................................................... 631
Index of Mathematical and Physical Subjects
............................. 637
Index of Academic Organisations and Institutions
......................... 641
Some Views of Munich and
Ludwig-Maximilian
University
................ 647
|
any_adam_object | 1 |
author | Geōrgiadou, Maria |
author_facet | Geōrgiadou, Maria |
author_role | aut |
author_sort | Geōrgiadou, Maria |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV017347992 |
callnumber-first | Q - Science |
callnumber-label | QA29 |
callnumber-raw | QA29.C35 |
callnumber-search | QA29.C35 |
callnumber-sort | QA 229 C35 |
callnumber-subject | QA - Mathematics |
classification_rvk | SG 130 |
ctrlnum | (OCoLC)52623790 (DE-599)BVBBV017347992 |
dewey-full | 510/.92 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510/.92 |
dewey-search | 510/.92 |
dewey-sort | 3510 292 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02100nam a2200517 c 4500</leader><controlfield tag="001">BV017347992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050317 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030723s2004 adc| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">969862571</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540442588</subfield><subfield code="9">3-540-44258-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540203524</subfield><subfield code="9">3-540-20352-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52623790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017347992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M352</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA29.C35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.92</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 130</subfield><subfield code="0">(DE-625)143047:13594</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">708500 Carathéodory, Constantin*by*ob</subfield><subfield code="2">sbb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geōrgiadou, Maria</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constantin Carathéodory</subfield><subfield code="b">mathematics and politics in turbulent times</subfield><subfield code="c">Maria Georgiadou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 651 S.</subfield><subfield code="b">Ill., graph. Darst., Portr.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Carathéodory, Constantin <1873-1950></subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Carathéodory, Constantin <1873-1950></subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Carathéodory, Constantin</subfield><subfield code="d">1873-1950</subfield><subfield code="0">(DE-588)118667076</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiciens - Grèce - Biographies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematicians</subfield><subfield code="z">Greece</subfield><subfield code="v">Biography</subfield></datafield><datafield tag="651" ind1=" " ind2="4"><subfield code="a">Griechenland</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4006804-3</subfield><subfield code="a">Biografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Carathéodory, Constantin</subfield><subfield code="d">1873-1950</subfield><subfield code="0">(DE-588)118667076</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://www.recensio.net/r/9f2537163df517c34bf5c76ff8002b6b</subfield><subfield code="y">rezensiert in: Südost-Forschungen, 69/70 (2010/2011), S. 637-639</subfield><subfield code="3">Rezension</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010456418&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">DHB</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">by</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">DHB_BSB_DDC1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010456418</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield><subfield code="f">0904</subfield><subfield code="g">43</subfield></datafield></record></collection> |
genre | (DE-588)4006804-3 Biografie gnd-content |
genre_facet | Biografie |
geographic | Griechenland |
geographic_facet | Griechenland |
id | DE-604.BV017347992 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:16:56Z |
institution | BVB |
isbn | 3540442588 3540203524 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010456418 |
oclc_num | 52623790 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-12 DE-355 DE-BY-UBR DE-29 DE-M352 DE-210 DE-703 DE-634 DE-11 DE-188 |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-12 DE-355 DE-BY-UBR DE-29 DE-M352 DE-210 DE-703 DE-634 DE-11 DE-188 |
physical | XXVIII, 651 S. Ill., graph. Darst., Portr. 24 cm |
psigel | DHB_BSB_DDC1 |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
spelling | Geōrgiadou, Maria Verfasser aut Constantin Carathéodory mathematics and politics in turbulent times Maria Georgiadou Berlin [u.a.] Springer 2004 XXVIII, 651 S. Ill., graph. Darst., Portr. 24 cm txt rdacontent n rdamedia nc rdacarrier Carathéodory, Constantin <1873-1950> Carathéodory, Constantin 1873-1950 (DE-588)118667076 gnd rswk-swf Mathématiciens - Grèce - Biographies Mathematicians Greece Biography Griechenland (DE-588)4006804-3 Biografie gnd-content Carathéodory, Constantin 1873-1950 (DE-588)118667076 p DE-604 https://www.recensio.net/r/9f2537163df517c34bf5c76ff8002b6b rezensiert in: Südost-Forschungen, 69/70 (2010/2011), S. 637-639 Rezension Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010456418&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Geōrgiadou, Maria Constantin Carathéodory mathematics and politics in turbulent times Carathéodory, Constantin <1873-1950> Carathéodory, Constantin 1873-1950 (DE-588)118667076 gnd Mathématiciens - Grèce - Biographies Mathematicians Greece Biography |
subject_GND | (DE-588)118667076 (DE-588)4006804-3 |
title | Constantin Carathéodory mathematics and politics in turbulent times |
title_auth | Constantin Carathéodory mathematics and politics in turbulent times |
title_exact_search | Constantin Carathéodory mathematics and politics in turbulent times |
title_full | Constantin Carathéodory mathematics and politics in turbulent times Maria Georgiadou |
title_fullStr | Constantin Carathéodory mathematics and politics in turbulent times Maria Georgiadou |
title_full_unstemmed | Constantin Carathéodory mathematics and politics in turbulent times Maria Georgiadou |
title_short | Constantin Carathéodory |
title_sort | constantin caratheodory mathematics and politics in turbulent times |
title_sub | mathematics and politics in turbulent times |
topic | Carathéodory, Constantin <1873-1950> Carathéodory, Constantin 1873-1950 (DE-588)118667076 gnd Mathématiciens - Grèce - Biographies Mathematicians Greece Biography |
topic_facet | Carathéodory, Constantin <1873-1950> Carathéodory, Constantin 1873-1950 Mathématiciens - Grèce - Biographies Mathematicians Greece Biography Griechenland Biografie |
url | https://www.recensio.net/r/9f2537163df517c34bf5c76ff8002b6b http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010456418&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT georgiadoumaria constantincaratheodorymathematicsandpoliticsinturbulenttimes |