The Lie algebras su(N): an introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 116 S. graph. Darst. |
ISBN: | 376432418X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017323150 | ||
003 | DE-604 | ||
005 | 20150601 | ||
007 | t | ||
008 | 030715s2003 d||| |||| 00||| ger d | ||
016 | 7 | |a 968059295 |2 DE-101 | |
020 | |a 376432418X |9 3-7643-2418-X | ||
035 | |a (OCoLC)52559255 | ||
035 | |a (DE-599)BVBBV017323150 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-355 |a DE-29T |a DE-11 |a DE-83 | ||
050 | 0 | |a QC20.7.L54 | |
082 | 0 | |a 512/.482 |2 22 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Pfeifer, Walter |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Lie algebras su(N) |b an introduction |c Walter Pfeifer |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2003 | |
300 | |a VI, 116 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Lie algebras | |
650 | 4 | |a Nonassociative rings | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spezielle unitäre Gruppe |0 (DE-588)4323137-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Spezielle unitäre Gruppe |0 (DE-588)4323137-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010441732 |
Datensatz im Suchindex
_version_ | 1804130160930193408 |
---|---|
adam_text | WALTER PFEIFER THE LIE ALGEBRAS SU(N) AN INTRODUCTION BIRKHAUSER BASEL *
BOSTON * BERLIN CONTENTS PREFACE VII 1 LIE ALGEBRAS 1 1.1 DEFINITION AND
BASIC PROPERTIES 1 1.1.1 WHAT IS A LIE ALGEBRA? 1 1.1.2 THE STRUCTURE
CONSTANTS 3 1.1.3 THE ADJOINT MATRICES 5 1.1.4 THE KILLING FORM 5 1.1.5
SIMPLICITY 6 1.1.6 EXAMPLE 6 1.2 ISOMORPHIC LIE ALGEBRAS 7 1.3 OPERATORS
AND FUNCTIONS 8 1.3.1 THE GENERAL SET-UP 8 1.3.2 FURTHER PROPERTIES 9
1.4 REPRESENTATION OF A LIE ALGEBRA 11 1.5 REDUCIBLE AND IRREDUCIBLE
REPRESENTATIONS 12 2 THE LIE ALGEBRAS SU(N) 15 2.1 HERMITIAN MATRICES 15
2.2 DEFINITION 16 2.3 STRUCTURE CONSTANTS OF SU(N) 20 3 THE LIE ALGEBRA
SU{2) 23 3.1 THE GENERATORS OF THE SW(2)-ALGEBRA 23 3.2 OPERATORS
CONSTITUTING THE ALGEBRA SU(2) 27 3.3 MULTIPLETS OF SU(2) 29 3.4
IRREDUCIBLE REPRESENTATIONS OF SU(2) 33 3.5 DIRECT PRODUCTS OF
IRREDUCIBLE REPRESENTATIONS 35 3.6 REDUCTION OF DIRECT PRODUCTS OF SU(2)
39 3.7 GRAPHICAL REDUCTION OF DIRECT PRODUCTS . * 45 VI CONTENTS 4 THE
LIE ALGEBRA SU(3) 49 4.1 THE GENERATORS OF THE SW(3)-ALGEBRA 49 4.2
SUBALGEBRAS OF THE SW(3)-ALGEBRA 51 4.3 STEP OPERATORS AND STATES IN
SU(3) 53 4.4 MULTIPLETS OF SU(3) 55 4.5 INDIVIDUAL STATES OF THE
S(3)-MULTIPLET 58 4.6 DIMENSION OF THE SW(3)-MULTIPLET 65 4.7 THE
SMALLEST SU(3)-MULTIPLETS 68 4.8 THE FUNDAMENTAL MULTIPLET OF SU(3) 70
4.9 THE HYPERCHARGE Y 71 4.10 IRREDUCIBLE REPRESENTATIONS OF THE SU(3)
ALGEBRA 74 4.11 CASIMIR OPERATORS 77 4.12 THE EIGENVALUE OF THE CASIMIR
OPERATOR C IN SU(3) 79 4.13 DIRECT PRODUCTS OF S(3)-MULTIPLETS 81 4.14
DECOMPOSITION OF DIRECT PRODUCTS OF MULTIPLETS 83 5 THE LIE ALGEBRA
SU(4) 87 5.1 THE GENERATORS OF THE SW(4)-ALGEBRA, SUBALGEBRAS 87 5.2
STEP OPERATORS AND STATES IN SU(4) 91 5.3 MULTIPLETS OF SU(4) 93 5.4 THE
CHARM C 9 8 5.5 DIRECT PRODUCTS OF SM(4)-MULTIPLETS 99 5.6 THE
CARTAN-WEYL BASIS OF SU(4) 100 6 GENERAL PROPERTIES OF THE
SII(IV)-ALGEBRAS 107 6.1 ELEMENTS OF THE SW(./V)-ALGEBRA 107 6.2
MULTIPLETS OF SU(N) 108 REFERENCES 112 INDEX 113
|
any_adam_object | 1 |
author | Pfeifer, Walter |
author_facet | Pfeifer, Walter |
author_role | aut |
author_sort | Pfeifer, Walter |
author_variant | w p wp |
building | Verbundindex |
bvnumber | BV017323150 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.L54 |
callnumber-search | QC20.7.L54 |
callnumber-sort | QC 220.7 L54 |
callnumber-subject | QC - Physics |
classification_rvk | SK 230 |
ctrlnum | (OCoLC)52559255 (DE-599)BVBBV017323150 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01484nam a2200409 c 4500</leader><controlfield tag="001">BV017323150</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150601 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030715s2003 d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968059295</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">376432418X</subfield><subfield code="9">3-7643-2418-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52559255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017323150</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.L54</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pfeifer, Walter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Lie algebras su(N)</subfield><subfield code="b">an introduction</subfield><subfield code="c">Walter Pfeifer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 116 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle unitäre Gruppe</subfield><subfield code="0">(DE-588)4323137-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spezielle unitäre Gruppe</subfield><subfield code="0">(DE-588)4323137-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010441732</subfield></datafield></record></collection> |
id | DE-604.BV017323150 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:16:37Z |
institution | BVB |
isbn | 376432418X |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010441732 |
oclc_num | 52559255 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-11 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-11 DE-83 |
physical | VI, 116 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser |
record_format | marc |
spelling | Pfeifer, Walter Verfasser aut The Lie algebras su(N) an introduction Walter Pfeifer Basel [u.a.] Birkhäuser 2003 VI, 116 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lie algebras Nonassociative rings Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Spezielle unitäre Gruppe (DE-588)4323137-8 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s Spezielle unitäre Gruppe (DE-588)4323137-8 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pfeifer, Walter The Lie algebras su(N) an introduction Lie algebras Nonassociative rings Lie-Algebra (DE-588)4130355-6 gnd Spezielle unitäre Gruppe (DE-588)4323137-8 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4323137-8 |
title | The Lie algebras su(N) an introduction |
title_auth | The Lie algebras su(N) an introduction |
title_exact_search | The Lie algebras su(N) an introduction |
title_full | The Lie algebras su(N) an introduction Walter Pfeifer |
title_fullStr | The Lie algebras su(N) an introduction Walter Pfeifer |
title_full_unstemmed | The Lie algebras su(N) an introduction Walter Pfeifer |
title_short | The Lie algebras su(N) |
title_sort | the lie algebras su n an introduction |
title_sub | an introduction |
topic | Lie algebras Nonassociative rings Lie-Algebra (DE-588)4130355-6 gnd Spezielle unitäre Gruppe (DE-588)4323137-8 gnd |
topic_facet | Lie algebras Nonassociative rings Lie-Algebra Spezielle unitäre Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pfeiferwalter theliealgebrassunanintroduction |