Monotone iterations for elliptic variational inequalities:
Abstract: "A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non-differentiable energy functional. The fast solution of related discretized problems is a very delicate question, bec...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1998
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1998,10 |
Schlagworte: | |
Zusammenfassung: | Abstract: "A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non-differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex minimization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the convergence speed. We present a general convergence theory and discuss several applications." |
Beschreibung: | 7 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017222249 | ||
003 | DE-604 | ||
005 | 20031112 | ||
007 | t| | ||
008 | 030616s1998 xx |||| 00||| eng d | ||
035 | |a (OCoLC)39674305 | ||
035 | |a (DE-599)BVBBV017222249 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Kornhuber, Ralf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Monotone iterations for elliptic variational inequalities |c Ralf Kornhuber |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1998 | |
300 | |a 7 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1998,10 | |
520 | 3 | |a Abstract: "A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non-differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex minimization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the convergence speed. We present a general convergence theory and discuss several applications." | |
650 | 4 | |a Finite element method | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
650 | 4 | |a Variational inequalities (Mathematics) | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1998,10 |w (DE-604)BV004801715 |9 1998,10 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010378859 |
Datensatz im Suchindex
_version_ | 1820882518185869312 |
---|---|
adam_text | |
any_adam_object | |
author | Kornhuber, Ralf |
author_facet | Kornhuber, Ralf |
author_role | aut |
author_sort | Kornhuber, Ralf |
author_variant | r k rk |
building | Verbundindex |
bvnumber | BV017222249 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)39674305 (DE-599)BVBBV017222249 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017222249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031112</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030616s1998 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39674305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017222249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kornhuber, Ralf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monotone iterations for elliptic variational inequalities</subfield><subfield code="c">Ralf Kornhuber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1998,10</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non-differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex minimization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the convergence speed. We present a general convergence theory and discuss several applications."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational inequalities (Mathematics)</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1998,10</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1998,10</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010378859</subfield></datafield></record></collection> |
id | DE-604.BV017222249 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:08:10Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010378859 |
oclc_num | 39674305 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 7 S. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Kornhuber, Ralf Verfasser aut Monotone iterations for elliptic variational inequalities Ralf Kornhuber Berlin Konrad-Zuse-Zentrum für Informationstechnik 1998 7 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1998,10 Abstract: "A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non-differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex minimization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the convergence speed. We present a general convergence theory and discuss several applications." Finite element method Multigrid methods (Numerical analysis) Variational inequalities (Mathematics) Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1998,10 (DE-604)BV004801715 1998,10 |
spellingShingle | Kornhuber, Ralf Monotone iterations for elliptic variational inequalities Finite element method Multigrid methods (Numerical analysis) Variational inequalities (Mathematics) |
title | Monotone iterations for elliptic variational inequalities |
title_auth | Monotone iterations for elliptic variational inequalities |
title_exact_search | Monotone iterations for elliptic variational inequalities |
title_full | Monotone iterations for elliptic variational inequalities Ralf Kornhuber |
title_fullStr | Monotone iterations for elliptic variational inequalities Ralf Kornhuber |
title_full_unstemmed | Monotone iterations for elliptic variational inequalities Ralf Kornhuber |
title_short | Monotone iterations for elliptic variational inequalities |
title_sort | monotone iterations for elliptic variational inequalities |
topic | Finite element method Multigrid methods (Numerical analysis) Variational inequalities (Mathematics) |
topic_facet | Finite element method Multigrid methods (Numerical analysis) Variational inequalities (Mathematics) |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT kornhuberralf monotoneiterationsforellipticvariationalinequalities |