Globally convergent multigrid methods for porous medium type problems:
Abstract: "We consider the fast solution of large, piecewise smooth minimization problems as typically arising from the finite element discretization of porous media flow. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1998
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,45 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We consider the fast solution of large, piecewise smooth minimization problems as typically arising from the finite element discretization of porous media flow. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minimization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give logarithmic upper bounds for the asymptotic convergence rates." |
Beschreibung: | 16 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017190339 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t| | ||
008 | 030604s1998 xx |||| 00||| eng d | ||
035 | |a (OCoLC)39980979 | ||
035 | |a (DE-599)BVBBV017190339 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Kornhuber, Ralf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Globally convergent multigrid methods for porous medium type problems |c Ralf Kornhuber |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1998 | |
300 | |a 16 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,45 | |
520 | 3 | |a Abstract: "We consider the fast solution of large, piecewise smooth minimization problems as typically arising from the finite element discretization of porous media flow. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minimization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give logarithmic upper bounds for the asymptotic convergence rates." | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Finite element method | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,45 |w (DE-604)BV004801715 |9 1997,45 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010361231 |
Datensatz im Suchindex
_version_ | 1820882518170140672 |
---|---|
adam_text | |
any_adam_object | |
author | Kornhuber, Ralf |
author_facet | Kornhuber, Ralf |
author_role | aut |
author_sort | Kornhuber, Ralf |
author_variant | r k rk |
building | Verbundindex |
bvnumber | BV017190339 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)39980979 (DE-599)BVBBV017190339 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017190339</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030604s1998 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39980979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017190339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kornhuber, Ralf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Globally convergent multigrid methods for porous medium type problems</subfield><subfield code="c">Ralf Kornhuber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,45</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We consider the fast solution of large, piecewise smooth minimization problems as typically arising from the finite element discretization of porous media flow. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minimization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give logarithmic upper bounds for the asymptotic convergence rates."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,45</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,45</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010361231</subfield></datafield></record></collection> |
id | DE-604.BV017190339 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:08:10Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010361231 |
oclc_num | 39980979 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 16 S. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Kornhuber, Ralf Verfasser aut Globally convergent multigrid methods for porous medium type problems Ralf Kornhuber Berlin Konrad-Zuse-Zentrum für Informationstechnik 1998 16 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,45 Abstract: "We consider the fast solution of large, piecewise smooth minimization problems as typically arising from the finite element discretization of porous media flow. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minimization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give logarithmic upper bounds for the asymptotic convergence rates." Calculus of variations Finite element method Multigrid methods (Numerical analysis) Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,45 (DE-604)BV004801715 1997,45 |
spellingShingle | Kornhuber, Ralf Globally convergent multigrid methods for porous medium type problems Calculus of variations Finite element method Multigrid methods (Numerical analysis) |
title | Globally convergent multigrid methods for porous medium type problems |
title_auth | Globally convergent multigrid methods for porous medium type problems |
title_exact_search | Globally convergent multigrid methods for porous medium type problems |
title_full | Globally convergent multigrid methods for porous medium type problems Ralf Kornhuber |
title_fullStr | Globally convergent multigrid methods for porous medium type problems Ralf Kornhuber |
title_full_unstemmed | Globally convergent multigrid methods for porous medium type problems Ralf Kornhuber |
title_short | Globally convergent multigrid methods for porous medium type problems |
title_sort | globally convergent multigrid methods for porous medium type problems |
topic | Calculus of variations Finite element method Multigrid methods (Numerical analysis) |
topic_facet | Calculus of variations Finite element method Multigrid methods (Numerical analysis) |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT kornhuberralf globallyconvergentmultigridmethodsforporousmediumtypeproblems |