GMERR, an error minimizing variant of GMRES:
Abstract: "The paper analyzes a recently proposed iterative error minimizing method for the solution of linear systems. Sufficient and necessary conditions for convergence are studied, which show that the method essentially requires normal matrices. An efficient implementation similar to GMRES...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,63 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The paper analyzes a recently proposed iterative error minimizing method for the solution of linear systems. Sufficient and necessary conditions for convergence are studied, which show that the method essentially requires normal matrices. An efficient implementation similar to GMRES has been worked out in detail. Numerical tests on general non-normal matrices, of course, indicate that this approach is not competitive with GMRES. Summarizing, if error minimizing is important, one should rather choose CGNE. A computational niche for GMERR might be problems [sic], where normal but non-symmetric matrices occur, like dissipative quantum mechanics." |
Beschreibung: | 19 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189920 | ||
003 | DE-604 | ||
005 | 20031006 | ||
007 | t| | ||
008 | 030604s1997 xx d||| |||| 00||| eng d | ||
035 | |a (OCoLC)39184660 | ||
035 | |a (DE-599)BVBBV017189920 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Ehrig, Rainald |e Verfasser |4 aut | |
245 | 1 | 0 | |a GMERR, an error minimizing variant of GMRES |c Rainald Ehrig ; Peter Deuflhard |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 19 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,63 | |
520 | 3 | |a Abstract: "The paper analyzes a recently proposed iterative error minimizing method for the solution of linear systems. Sufficient and necessary conditions for convergence are studied, which show that the method essentially requires normal matrices. An efficient implementation similar to GMRES has been worked out in detail. Numerical tests on general non-normal matrices, of course, indicate that this approach is not competitive with GMRES. Summarizing, if error minimizing is important, one should rather choose CGNE. A computational niche for GMERR might be problems [sic], where normal but non-symmetric matrices occur, like dissipative quantum mechanics." | |
650 | 4 | |a Error functions | |
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Linear systems | |
700 | 1 | |a Deuflhard, Peter |d 1944-2019 |e Verfasser |0 (DE-588)108205983 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,63 |w (DE-604)BV004801715 |9 1997,63 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010360847 |
Datensatz im Suchindex
_version_ | 1820882518173286402 |
---|---|
adam_text | |
any_adam_object | |
author | Ehrig, Rainald Deuflhard, Peter 1944-2019 |
author_GND | (DE-588)108205983 |
author_facet | Ehrig, Rainald Deuflhard, Peter 1944-2019 |
author_role | aut aut |
author_sort | Ehrig, Rainald |
author_variant | r e re p d pd |
building | Verbundindex |
bvnumber | BV017189920 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)39184660 (DE-599)BVBBV017189920 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017189920</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031006</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030604s1997 xx d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39184660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189920</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ehrig, Rainald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">GMERR, an error minimizing variant of GMRES</subfield><subfield code="c">Rainald Ehrig ; Peter Deuflhard</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,63</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The paper analyzes a recently proposed iterative error minimizing method for the solution of linear systems. Sufficient and necessary conditions for convergence are studied, which show that the method essentially requires normal matrices. An efficient implementation similar to GMRES has been worked out in detail. Numerical tests on general non-normal matrices, of course, indicate that this approach is not competitive with GMRES. Summarizing, if error minimizing is important, one should rather choose CGNE. A computational niche for GMERR might be problems [sic], where normal but non-symmetric matrices occur, like dissipative quantum mechanics."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="d">1944-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108205983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,63</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,63</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360847</subfield></datafield></record></collection> |
id | DE-604.BV017189920 |
illustrated | Illustrated |
indexdate | 2025-01-10T17:08:10Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360847 |
oclc_num | 39184660 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 19 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Ehrig, Rainald Verfasser aut GMERR, an error minimizing variant of GMRES Rainald Ehrig ; Peter Deuflhard Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 19 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,63 Abstract: "The paper analyzes a recently proposed iterative error minimizing method for the solution of linear systems. Sufficient and necessary conditions for convergence are studied, which show that the method essentially requires normal matrices. An efficient implementation similar to GMRES has been worked out in detail. Numerical tests on general non-normal matrices, of course, indicate that this approach is not competitive with GMRES. Summarizing, if error minimizing is important, one should rather choose CGNE. A computational niche for GMERR might be problems [sic], where normal but non-symmetric matrices occur, like dissipative quantum mechanics." Error functions Iterative methods (Mathematics) Linear systems Deuflhard, Peter 1944-2019 Verfasser (DE-588)108205983 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,63 (DE-604)BV004801715 1997,63 |
spellingShingle | Ehrig, Rainald Deuflhard, Peter 1944-2019 GMERR, an error minimizing variant of GMRES Error functions Iterative methods (Mathematics) Linear systems |
title | GMERR, an error minimizing variant of GMRES |
title_auth | GMERR, an error minimizing variant of GMRES |
title_exact_search | GMERR, an error minimizing variant of GMRES |
title_full | GMERR, an error minimizing variant of GMRES Rainald Ehrig ; Peter Deuflhard |
title_fullStr | GMERR, an error minimizing variant of GMRES Rainald Ehrig ; Peter Deuflhard |
title_full_unstemmed | GMERR, an error minimizing variant of GMRES Rainald Ehrig ; Peter Deuflhard |
title_short | GMERR, an error minimizing variant of GMRES |
title_sort | gmerr an error minimizing variant of gmres |
topic | Error functions Iterative methods (Mathematics) Linear systems |
topic_facet | Error functions Iterative methods (Mathematics) Linear systems |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT ehrigrainald gmerranerrorminimizingvariantofgmres AT deuflhardpeter gmerranerrorminimizingvariantofgmres |