Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions:
Abstract: "In this article we consider a general model for phosphorus diffusion in silicon under extrinsic doping conditions. At such high concentrations we have to include the charged species and the internal electric field of the crystal, both of which can have profound effects on diffusion....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,47 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this article we consider a general model for phosphorus diffusion in silicon under extrinsic doping conditions. At such high concentrations we have to include the charged species and the internal electric field of the crystal, both of which can have profound effects on diffusion. In principle, this leads to a very large number of drift-diffusion-reaction equations: one for each charge state of every species, plus one Poisson equation to describe the internal electric field (in terms of the electron/hole concentration). The number of equations can be reduced substantially by making additional assumptions on the distribution of charge states and local equilibrium assumptions concerning the reaction terms. The resulting model turns out to be very interesting for numerical investigation. We solve the problem numerically in two space dimensions with the adaptive finite element program KARDOS and describe the numerical method used here to treat the resulting drift-diffusion-reaction problem." |
Beschreibung: | 26 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189386 | ||
003 | DE-604 | ||
005 | 20031006 | ||
007 | t| | ||
008 | 030604s1997 xx ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)39184672 | ||
035 | |a (DE-599)BVBBV017189386 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Lang, Jens |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions |c J. Lang and W. Merz |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 26 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,47 | |
520 | 3 | |a Abstract: "In this article we consider a general model for phosphorus diffusion in silicon under extrinsic doping conditions. At such high concentrations we have to include the charged species and the internal electric field of the crystal, both of which can have profound effects on diffusion. In principle, this leads to a very large number of drift-diffusion-reaction equations: one for each charge state of every species, plus one Poisson equation to describe the internal electric field (in terms of the electron/hole concentration). The number of equations can be reduced substantially by making additional assumptions on the distribution of charge states and local equilibrium assumptions concerning the reaction terms. The resulting model turns out to be very interesting for numerical investigation. We solve the problem numerically in two space dimensions with the adaptive finite element program KARDOS and describe the numerical method used here to treat the resulting drift-diffusion-reaction problem." | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Diffusion |x Mathematical models | |
650 | 4 | |a Phosphorus | |
650 | 4 | |a Semiconductor doping | |
700 | 1 | |a Merz, W. |e Verfasser |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,47 |w (DE-604)BV004801715 |9 1997,47 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010360347 |
Datensatz im Suchindex
_version_ | 1820882518165946369 |
---|---|
adam_text | |
any_adam_object | |
author | Lang, Jens Merz, W. |
author_facet | Lang, Jens Merz, W. |
author_role | aut aut |
author_sort | Lang, Jens |
author_variant | j l jl w m wm |
building | Verbundindex |
bvnumber | BV017189386 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)39184672 (DE-599)BVBBV017189386 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017189386</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031006</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030604s1997 xx ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39184672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189386</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Jens</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions</subfield><subfield code="c">J. Lang and W. Merz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">26 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,47</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this article we consider a general model for phosphorus diffusion in silicon under extrinsic doping conditions. At such high concentrations we have to include the charged species and the internal electric field of the crystal, both of which can have profound effects on diffusion. In principle, this leads to a very large number of drift-diffusion-reaction equations: one for each charge state of every species, plus one Poisson equation to describe the internal electric field (in terms of the electron/hole concentration). The number of equations can be reduced substantially by making additional assumptions on the distribution of charge states and local equilibrium assumptions concerning the reaction terms. The resulting model turns out to be very interesting for numerical investigation. We solve the problem numerically in two space dimensions with the adaptive finite element program KARDOS and describe the numerical method used here to treat the resulting drift-diffusion-reaction problem."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphorus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor doping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merz, W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,47</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,47</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360347</subfield></datafield></record></collection> |
id | DE-604.BV017189386 |
illustrated | Illustrated |
indexdate | 2025-01-10T17:08:10Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360347 |
oclc_num | 39184672 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 26 S. Ill., graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Lang, Jens Verfasser aut Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions J. Lang and W. Merz Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 26 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,47 Abstract: "In this article we consider a general model for phosphorus diffusion in silicon under extrinsic doping conditions. At such high concentrations we have to include the charged species and the internal electric field of the crystal, both of which can have profound effects on diffusion. In principle, this leads to a very large number of drift-diffusion-reaction equations: one for each charge state of every species, plus one Poisson equation to describe the internal electric field (in terms of the electron/hole concentration). The number of equations can be reduced substantially by making additional assumptions on the distribution of charge states and local equilibrium assumptions concerning the reaction terms. The resulting model turns out to be very interesting for numerical investigation. We solve the problem numerically in two space dimensions with the adaptive finite element program KARDOS and describe the numerical method used here to treat the resulting drift-diffusion-reaction problem." Mathematisches Modell Diffusion Mathematical models Phosphorus Semiconductor doping Merz, W. Verfasser aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,47 (DE-604)BV004801715 1997,47 |
spellingShingle | Lang, Jens Merz, W. Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions Mathematisches Modell Diffusion Mathematical models Phosphorus Semiconductor doping |
title | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions |
title_auth | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions |
title_exact_search | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions |
title_full | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions J. Lang and W. Merz |
title_fullStr | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions J. Lang and W. Merz |
title_full_unstemmed | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions J. Lang and W. Merz |
title_short | Numerical simulation of single species dopant diffusion in silicon under extrinsic conditions |
title_sort | numerical simulation of single species dopant diffusion in silicon under extrinsic conditions |
topic | Mathematisches Modell Diffusion Mathematical models Phosphorus Semiconductor doping |
topic_facet | Mathematisches Modell Diffusion Mathematical models Phosphorus Semiconductor doping |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT langjens numericalsimulationofsinglespeciesdopantdiffusioninsiliconunderextrinsicconditions AT merzw numericalsimulationofsinglespeciesdopantdiffusioninsiliconunderextrinsicconditions |