Numerical integrators for quantum classical molecular dynamics:
Abstract: "It was revealed that the QCMD model is of canonical Hamiltonian form with symplectic structure, which implies the conservation of energy. An efficient and reliable integrator for transfering these properties to the discrete solution is the symplectic and explicit PICKABACK algorithm....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,42 |
Schlagworte: | |
Zusammenfassung: | Abstract: "It was revealed that the QCMD model is of canonical Hamiltonian form with symplectic structure, which implies the conservation of energy. An efficient and reliable integrator for transfering these properties to the discrete solution is the symplectic and explicit PICKABACK algorithm. The only drawback of this kind of integrator is the small stepsize in time induced by the splitting techniques used to discretize the quantum evolution operator. Recent investigations concerning Krylov iteration techniques result in alternative approaches which overcome this difficulty for a wide range of problems. By using iterative methods in the evaluation of the quantum time propagator, these techniques allow for the stepsize to adapt to the classical motion and the coupling between the classical and the quantum mechanical subsystem. This yields a drastic reduction of the numerical effort. The pros and cons of both approaches as well as the suitable applications are discussed in the last part." |
Beschreibung: | 15 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189347 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t | ||
008 | 030604s1997 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)39184676 | ||
035 | |a (DE-599)BVBBV017189347 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a SS 4777 |0 (DE-625)143522: |2 rvk | ||
100 | 1 | |a Nettesheim, Peter |d 1967- |e Verfasser |0 (DE-588)122035984 |4 aut | |
245 | 1 | 0 | |a Numerical integrators for quantum classical molecular dynamics |c Peter Nettesheim and Christof Schütte |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 15 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,42 | |
520 | 3 | |a Abstract: "It was revealed that the QCMD model is of canonical Hamiltonian form with symplectic structure, which implies the conservation of energy. An efficient and reliable integrator for transfering these properties to the discrete solution is the symplectic and explicit PICKABACK algorithm. The only drawback of this kind of integrator is the small stepsize in time induced by the splitting techniques used to discretize the quantum evolution operator. Recent investigations concerning Krylov iteration techniques result in alternative approaches which overcome this difficulty for a wide range of problems. By using iterative methods in the evaluation of the quantum time propagator, these techniques allow for the stepsize to adapt to the classical motion and the coupling between the classical and the quantum mechanical subsystem. This yields a drastic reduction of the numerical effort. The pros and cons of both approaches as well as the suitable applications are discussed in the last part." | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Molecular dynamics | |
650 | 4 | |a Quantum theory | |
700 | 1 | |a Schütte, Christof |d 1966- |e Verfasser |0 (DE-588)1049564030 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,42 |w (DE-604)BV004801715 |9 1997,42 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010360310 |
Datensatz im Suchindex
_version_ | 1804130045694836736 |
---|---|
any_adam_object | |
author | Nettesheim, Peter 1967- Schütte, Christof 1966- |
author_GND | (DE-588)122035984 (DE-588)1049564030 |
author_facet | Nettesheim, Peter 1967- Schütte, Christof 1966- |
author_role | aut aut |
author_sort | Nettesheim, Peter 1967- |
author_variant | p n pn c s cs |
building | Verbundindex |
bvnumber | BV017189347 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)39184676 (DE-599)BVBBV017189347 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02265nam a2200349 cb4500</leader><controlfield tag="001">BV017189347</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030604s1997 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39184676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189347</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4777</subfield><subfield code="0">(DE-625)143522:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nettesheim, Peter</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122035984</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical integrators for quantum classical molecular dynamics</subfield><subfield code="c">Peter Nettesheim and Christof Schütte</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,42</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "It was revealed that the QCMD model is of canonical Hamiltonian form with symplectic structure, which implies the conservation of energy. An efficient and reliable integrator for transfering these properties to the discrete solution is the symplectic and explicit PICKABACK algorithm. The only drawback of this kind of integrator is the small stepsize in time induced by the splitting techniques used to discretize the quantum evolution operator. Recent investigations concerning Krylov iteration techniques result in alternative approaches which overcome this difficulty for a wide range of problems. By using iterative methods in the evaluation of the quantum time propagator, these techniques allow for the stepsize to adapt to the classical motion and the coupling between the classical and the quantum mechanical subsystem. This yields a drastic reduction of the numerical effort. The pros and cons of both approaches as well as the suitable applications are discussed in the last part."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schütte, Christof</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1049564030</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,42</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,42</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360310</subfield></datafield></record></collection> |
id | DE-604.BV017189347 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:14:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360310 |
oclc_num | 39184676 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 15 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Nettesheim, Peter 1967- Verfasser (DE-588)122035984 aut Numerical integrators for quantum classical molecular dynamics Peter Nettesheim and Christof Schütte Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 15 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,42 Abstract: "It was revealed that the QCMD model is of canonical Hamiltonian form with symplectic structure, which implies the conservation of energy. An efficient and reliable integrator for transfering these properties to the discrete solution is the symplectic and explicit PICKABACK algorithm. The only drawback of this kind of integrator is the small stepsize in time induced by the splitting techniques used to discretize the quantum evolution operator. Recent investigations concerning Krylov iteration techniques result in alternative approaches which overcome this difficulty for a wide range of problems. By using iterative methods in the evaluation of the quantum time propagator, these techniques allow for the stepsize to adapt to the classical motion and the coupling between the classical and the quantum mechanical subsystem. This yields a drastic reduction of the numerical effort. The pros and cons of both approaches as well as the suitable applications are discussed in the last part." Quantentheorie Iterative methods (Mathematics) Molecular dynamics Quantum theory Schütte, Christof 1966- Verfasser (DE-588)1049564030 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,42 (DE-604)BV004801715 1997,42 |
spellingShingle | Nettesheim, Peter 1967- Schütte, Christof 1966- Numerical integrators for quantum classical molecular dynamics Quantentheorie Iterative methods (Mathematics) Molecular dynamics Quantum theory |
title | Numerical integrators for quantum classical molecular dynamics |
title_auth | Numerical integrators for quantum classical molecular dynamics |
title_exact_search | Numerical integrators for quantum classical molecular dynamics |
title_full | Numerical integrators for quantum classical molecular dynamics Peter Nettesheim and Christof Schütte |
title_fullStr | Numerical integrators for quantum classical molecular dynamics Peter Nettesheim and Christof Schütte |
title_full_unstemmed | Numerical integrators for quantum classical molecular dynamics Peter Nettesheim and Christof Schütte |
title_short | Numerical integrators for quantum classical molecular dynamics |
title_sort | numerical integrators for quantum classical molecular dynamics |
topic | Quantentheorie Iterative methods (Mathematics) Molecular dynamics Quantum theory |
topic_facet | Quantentheorie Iterative methods (Mathematics) Molecular dynamics Quantum theory |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT nettesheimpeter numericalintegratorsforquantumclassicalmoleculardynamics AT schuttechristof numericalintegratorsforquantumclassicalmoleculardynamics |