Minimally non-preperfect graphs of small maximum degree:
Abstract: "A graph G is called preperfect if each induced subgraph G' [subset] G of order at least 2 has two vertices x, y such that either all maximum cliques of G' containing x contain y, or all maximum independent sets of G' containing y contain x, too. Giving a partial answer...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,28 |
Schlagworte: | |
Zusammenfassung: | Abstract: "A graph G is called preperfect if each induced subgraph G' [subset] G of order at least 2 has two vertices x, y such that either all maximum cliques of G' containing x contain y, or all maximum independent sets of G' containing y contain x, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199- 208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: (i) A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. (ii) If a graph G is not an odd cycle and has no isolated vertices, then its line graph is minimally non- perfect if and only if G is bipartite, 3-edge-connected, regular of degree d for some d [> or =] 3, and contains no 3-edge-connected d'-regular subgraph for any 3 [<or =] d' <d." |
Beschreibung: | 17 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189266 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t | ||
008 | 030604s1997 |||| 00||| eng d | ||
035 | |a (OCoLC)38761598 | ||
035 | |a (DE-599)BVBBV017189266 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a SS 4777 |0 (DE-625)143522: |2 rvk | ||
100 | 1 | |a Tuza, Zsolt |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimally non-preperfect graphs of small maximum degree |c Zsolt Tuza ; Annegret Wagler |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 17 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,28 | |
520 | 3 | |a Abstract: "A graph G is called preperfect if each induced subgraph G' [subset] G of order at least 2 has two vertices x, y such that either all maximum cliques of G' containing x contain y, or all maximum independent sets of G' containing y contain x, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199- 208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: (i) A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. (ii) If a graph G is not an odd cycle and has no isolated vertices, then its line graph is minimally non- perfect if and only if G is bipartite, 3-edge-connected, regular of degree d for some d [> or =] 3, and contains no 3-edge-connected d'-regular subgraph for any 3 [<or =] d' <d." | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Perfect graphs | |
700 | 1 | |a Wagler, Annegret |d 1968- |e Verfasser |0 (DE-588)113770227 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,28 |w (DE-604)BV004801715 |9 1997,28 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010360238 |
Datensatz im Suchindex
_version_ | 1804130045569007616 |
---|---|
any_adam_object | |
author | Tuza, Zsolt Wagler, Annegret 1968- |
author_GND | (DE-588)113770227 |
author_facet | Tuza, Zsolt Wagler, Annegret 1968- |
author_role | aut aut |
author_sort | Tuza, Zsolt |
author_variant | z t zt a w aw |
building | Verbundindex |
bvnumber | BV017189266 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)38761598 (DE-599)BVBBV017189266 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02070nam a2200325 cb4500</leader><controlfield tag="001">BV017189266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030604s1997 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38761598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4777</subfield><subfield code="0">(DE-625)143522:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tuza, Zsolt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimally non-preperfect graphs of small maximum degree</subfield><subfield code="c">Zsolt Tuza ; Annegret Wagler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,28</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "A graph G is called preperfect if each induced subgraph G' [subset] G of order at least 2 has two vertices x, y such that either all maximum cliques of G' containing x contain y, or all maximum independent sets of G' containing y contain x, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199- 208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: (i) A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. (ii) If a graph G is not an odd cycle and has no isolated vertices, then its line graph is minimally non- perfect if and only if G is bipartite, 3-edge-connected, regular of degree d for some d [> or =] 3, and contains no 3-edge-connected d'-regular subgraph for any 3 [<or =] d' <d."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perfect graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagler, Annegret</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113770227</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,28</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,28</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360238</subfield></datafield></record></collection> |
id | DE-604.BV017189266 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:14:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360238 |
oclc_num | 38761598 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 17 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Tuza, Zsolt Verfasser aut Minimally non-preperfect graphs of small maximum degree Zsolt Tuza ; Annegret Wagler Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 17 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,28 Abstract: "A graph G is called preperfect if each induced subgraph G' [subset] G of order at least 2 has two vertices x, y such that either all maximum cliques of G' containing x contain y, or all maximum independent sets of G' containing y contain x, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199- 208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: (i) A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. (ii) If a graph G is not an odd cycle and has no isolated vertices, then its line graph is minimally non- perfect if and only if G is bipartite, 3-edge-connected, regular of degree d for some d [> or =] 3, and contains no 3-edge-connected d'-regular subgraph for any 3 [<or =] d' <d." Graph theory Perfect graphs Wagler, Annegret 1968- Verfasser (DE-588)113770227 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,28 (DE-604)BV004801715 1997,28 |
spellingShingle | Tuza, Zsolt Wagler, Annegret 1968- Minimally non-preperfect graphs of small maximum degree Graph theory Perfect graphs |
title | Minimally non-preperfect graphs of small maximum degree |
title_auth | Minimally non-preperfect graphs of small maximum degree |
title_exact_search | Minimally non-preperfect graphs of small maximum degree |
title_full | Minimally non-preperfect graphs of small maximum degree Zsolt Tuza ; Annegret Wagler |
title_fullStr | Minimally non-preperfect graphs of small maximum degree Zsolt Tuza ; Annegret Wagler |
title_full_unstemmed | Minimally non-preperfect graphs of small maximum degree Zsolt Tuza ; Annegret Wagler |
title_short | Minimally non-preperfect graphs of small maximum degree |
title_sort | minimally non preperfect graphs of small maximum degree |
topic | Graph theory Perfect graphs |
topic_facet | Graph theory Perfect graphs |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT tuzazsolt minimallynonpreperfectgraphsofsmallmaximumdegree AT waglerannegret minimallynonpreperfectgraphsofsmallmaximumdegree |