Decomposing matrices into blocks:
Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [ka...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,15 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the LP- and MIP- libraries Netlib and Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition. We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of optimal matrix decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs." |
Beschreibung: | 26 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189045 | ||
003 | DE-604 | ||
005 | 20200217 | ||
007 | t | ||
008 | 030604s1997 ||||z00||| eng d | ||
035 | |a (OCoLC)37991470 | ||
035 | |a (DE-599)BVBBV017189045 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-188 | ||
084 | |a SS 4777 |0 (DE-625)143522: |2 rvk | ||
100 | 1 | |a Borndörfer, Ralf |d 1967- |e Verfasser |0 (DE-588)120855909 |4 aut | |
245 | 1 | 0 | |a Decomposing matrices into blocks |c Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 26 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,15 | |
520 | 3 | |a Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the LP- and MIP- libraries Netlib and Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition. We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of optimal matrix decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs." | |
650 | 4 | |a Decomposition (Mathematics) | |
650 | 4 | |a Integer programming | |
650 | 4 | |a Matrices | |
700 | 1 | |a Ferreira, Carlos E. |e Verfasser |4 aut | |
700 | 1 | |a Martin, Alexander |d 1965- |e Verfasser |0 (DE-588)1013264479 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,15 |w (DE-604)BV004801715 |9 1997,15 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010360037 |
Datensatz im Suchindex
_version_ | 1804130045294280704 |
---|---|
any_adam_object | |
author | Borndörfer, Ralf 1967- Ferreira, Carlos E. Martin, Alexander 1965- |
author_GND | (DE-588)120855909 (DE-588)1013264479 |
author_facet | Borndörfer, Ralf 1967- Ferreira, Carlos E. Martin, Alexander 1965- |
author_role | aut aut aut |
author_sort | Borndörfer, Ralf 1967- |
author_variant | r b rb c e f ce cef a m am |
building | Verbundindex |
bvnumber | BV017189045 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37991470 (DE-599)BVBBV017189045 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02408nam a2200349 cb4500</leader><controlfield tag="001">BV017189045</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030604s1997 ||||z00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37991470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4777</subfield><subfield code="0">(DE-625)143522:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borndörfer, Ralf</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120855909</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decomposing matrices into blocks</subfield><subfield code="c">Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">26 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,15</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the LP- and MIP- libraries Netlib and Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition. We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of optimal matrix decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferreira, Carlos E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, Alexander</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1013264479</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,15</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,15</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360037</subfield></datafield></record></collection> |
id | DE-604.BV017189045 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:14:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360037 |
oclc_num | 37991470 |
open_access_boolean | |
owner | DE-703 DE-188 |
owner_facet | DE-703 DE-188 |
physical | 26 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Borndörfer, Ralf 1967- Verfasser (DE-588)120855909 aut Decomposing matrices into blocks Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 26 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,15 Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the LP- and MIP- libraries Netlib and Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition. We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of optimal matrix decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs." Decomposition (Mathematics) Integer programming Matrices Ferreira, Carlos E. Verfasser aut Martin, Alexander 1965- Verfasser (DE-588)1013264479 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,15 (DE-604)BV004801715 1997,15 |
spellingShingle | Borndörfer, Ralf 1967- Ferreira, Carlos E. Martin, Alexander 1965- Decomposing matrices into blocks Decomposition (Mathematics) Integer programming Matrices |
title | Decomposing matrices into blocks |
title_auth | Decomposing matrices into blocks |
title_exact_search | Decomposing matrices into blocks |
title_full | Decomposing matrices into blocks Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
title_fullStr | Decomposing matrices into blocks Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
title_full_unstemmed | Decomposing matrices into blocks Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
title_short | Decomposing matrices into blocks |
title_sort | decomposing matrices into blocks |
topic | Decomposition (Mathematics) Integer programming Matrices |
topic_facet | Decomposition (Mathematics) Integer programming Matrices |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT borndorferralf decomposingmatricesintoblocks AT ferreiracarlose decomposingmatricesintoblocks AT martinalexander decomposingmatricesintoblocks |