Matrix decomposition by branch and cut:
Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [ka...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,14 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189032 | ||
003 | DE-604 | ||
005 | 20200217 | ||
007 | t| | ||
008 | 030604s1997 xx ||||z00||| eng d | ||
035 | |a (OCoLC)37991482 | ||
035 | |a (DE-599)BVBBV017189032 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-188 | ||
100 | 1 | |a Borndörfer, Ralf |d 1967- |e Verfasser |0 (DE-588)120855909 |4 aut | |
245 | 1 | 0 | |a Matrix decomposition by branch and cut |c Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,14 | |
520 | 3 | |a Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem." | |
650 | 4 | |a Decomposition (Mathematics) | |
650 | 4 | |a Integer programming | |
650 | 4 | |a Matrices | |
700 | 1 | |a Ferreira, Carlos E. |e Verfasser |4 aut | |
700 | 1 | |a Martin, Alexander |d 1965- |e Verfasser |0 (DE-588)1013264479 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,14 |w (DE-604)BV004801715 |9 1997,14 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010360026 |
Datensatz im Suchindex
_version_ | 1820882503741734912 |
---|---|
adam_text | |
any_adam_object | |
author | Borndörfer, Ralf 1967- Ferreira, Carlos E. Martin, Alexander 1965- |
author_GND | (DE-588)120855909 (DE-588)1013264479 |
author_facet | Borndörfer, Ralf 1967- Ferreira, Carlos E. Martin, Alexander 1965- |
author_role | aut aut aut |
author_sort | Borndörfer, Ralf 1967- |
author_variant | r b rb c e f ce cef a m am |
building | Verbundindex |
bvnumber | BV017189032 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37991482 (DE-599)BVBBV017189032 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017189032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200217</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030604s1997 xx ||||z00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37991482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borndörfer, Ralf</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120855909</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix decomposition by branch and cut</subfield><subfield code="c">Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,14</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferreira, Carlos E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, Alexander</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1013264479</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,14</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,14</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360026</subfield></datafield></record></collection> |
id | DE-604.BV017189032 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:07:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360026 |
oclc_num | 37991482 |
open_access_boolean | |
owner | DE-703 DE-188 |
owner_facet | DE-703 DE-188 |
physical | 10 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Borndörfer, Ralf 1967- Verfasser (DE-588)120855909 aut Matrix decomposition by branch and cut Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 10 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,14 Abstract: "In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so- called bordered block diagonal form. More precisely, given some matrix A, we try to assign as many rows as possible to some number [beta] of blocks of size [kappa] such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the Miplib can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem." Decomposition (Mathematics) Integer programming Matrices Ferreira, Carlos E. Verfasser aut Martin, Alexander 1965- Verfasser (DE-588)1013264479 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,14 (DE-604)BV004801715 1997,14 |
spellingShingle | Borndörfer, Ralf 1967- Ferreira, Carlos E. Martin, Alexander 1965- Matrix decomposition by branch and cut Decomposition (Mathematics) Integer programming Matrices |
title | Matrix decomposition by branch and cut |
title_auth | Matrix decomposition by branch and cut |
title_exact_search | Matrix decomposition by branch and cut |
title_full | Matrix decomposition by branch and cut Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
title_fullStr | Matrix decomposition by branch and cut Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
title_full_unstemmed | Matrix decomposition by branch and cut Ralf Borndörfer ; Carlos E. Ferreira ; Alexander Martin |
title_short | Matrix decomposition by branch and cut |
title_sort | matrix decomposition by branch and cut |
topic | Decomposition (Mathematics) Integer programming Matrices |
topic_facet | Decomposition (Mathematics) Integer programming Matrices |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT borndorferralf matrixdecompositionbybranchandcut AT ferreiracarlose matrixdecompositionbybranchandcut AT martinalexander matrixdecompositionbybranchandcut |