A polyhedral study of the asymmetric travelling salesman problem with time windows:
Abstract: "The asymmetric travelling salesman problem with time windows (ATSP-TW) is a basic model for scheduling and routing applications. In this paper we present a formulation of the problem involving only 0/1- variables associated with the arcs of the underlying digraph. This has the advant...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,11 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The asymmetric travelling salesman problem with time windows (ATSP-TW) is a basic model for scheduling and routing applications. In this paper we present a formulation of the problem involving only 0/1- variables associated with the arcs of the underlying digraph. This has the advantage of avoiding additional variables as well as the associated (typically very ineffective) linking constraints. In the formulation, time window restrictions are modelled by means of 'infeasible path elimination' constraints. We present the basic form of these constraints along with some possible strengthenings. Several other classes of valid inequalities derived from related asymmetric travelling salesman problems are also described, along with a lifting theorem. We also study the ATSP-TW polytope, P[subscript TW], defined as the convex hull of the integer solutions of our model. We show that determining the dimension of P[subscript TW] is strongly NP-complete problem, even if only one time window is present. In this latter case, we provide a minimal equation system for P[subscript TW]. Computational experiments on the new formulation are reported in a companion paper [5] where we show that it outperforms alternative formulations on some classes of problem instances." |
Beschreibung: | 20 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189006 | ||
003 | DE-604 | ||
005 | 20031006 | ||
007 | t | ||
008 | 030604s1997 d||| ||||z00||| eng d | ||
035 | |a (OCoLC)37991496 | ||
035 | |a (DE-599)BVBBV017189006 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-188 | ||
084 | |a SS 4777 |0 (DE-625)143522: |2 rvk | ||
100 | 1 | |a Ascheuer, Norbert |e Verfasser |4 aut | |
245 | 1 | 0 | |a A polyhedral study of the asymmetric travelling salesman problem with time windows |c Norbert Ascheuer ; Matteo Fischetti ; Martin Grötschel |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 20 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,11 | |
520 | 3 | |a Abstract: "The asymmetric travelling salesman problem with time windows (ATSP-TW) is a basic model for scheduling and routing applications. In this paper we present a formulation of the problem involving only 0/1- variables associated with the arcs of the underlying digraph. This has the advantage of avoiding additional variables as well as the associated (typically very ineffective) linking constraints. In the formulation, time window restrictions are modelled by means of 'infeasible path elimination' constraints. We present the basic form of these constraints along with some possible strengthenings. Several other classes of valid inequalities derived from related asymmetric travelling salesman problems are also described, along with a lifting theorem. We also study the ATSP-TW polytope, P[subscript TW], defined as the convex hull of the integer solutions of our model. We show that determining the dimension of P[subscript TW] is strongly NP-complete problem, even if only one time window is present. In this latter case, we provide a minimal equation system for P[subscript TW]. Computational experiments on the new formulation are reported in a companion paper [5] where we show that it outperforms alternative formulations on some classes of problem instances." | |
650 | 4 | |a Traveling-salesman problem | |
700 | 1 | |a Fischetti, Matteo |e Verfasser |4 aut | |
700 | 1 | |a Grötschel, Martin |d 1948- |e Verfasser |0 (DE-588)108975282 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,11 |w (DE-604)BV004801715 |9 1997,11 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010360002 |
Datensatz im Suchindex
_version_ | 1804130045230317568 |
---|---|
any_adam_object | |
author | Ascheuer, Norbert Fischetti, Matteo Grötschel, Martin 1948- |
author_GND | (DE-588)108975282 |
author_facet | Ascheuer, Norbert Fischetti, Matteo Grötschel, Martin 1948- |
author_role | aut aut aut |
author_sort | Ascheuer, Norbert |
author_variant | n a na m f mf m g mg |
building | Verbundindex |
bvnumber | BV017189006 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37991496 (DE-599)BVBBV017189006 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02510nam a2200325 cb4500</leader><controlfield tag="001">BV017189006</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031006 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030604s1997 d||| ||||z00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37991496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4777</subfield><subfield code="0">(DE-625)143522:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ascheuer, Norbert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A polyhedral study of the asymmetric travelling salesman problem with time windows</subfield><subfield code="c">Norbert Ascheuer ; Matteo Fischetti ; Martin Grötschel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,11</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The asymmetric travelling salesman problem with time windows (ATSP-TW) is a basic model for scheduling and routing applications. In this paper we present a formulation of the problem involving only 0/1- variables associated with the arcs of the underlying digraph. This has the advantage of avoiding additional variables as well as the associated (typically very ineffective) linking constraints. In the formulation, time window restrictions are modelled by means of 'infeasible path elimination' constraints. We present the basic form of these constraints along with some possible strengthenings. Several other classes of valid inequalities derived from related asymmetric travelling salesman problems are also described, along with a lifting theorem. We also study the ATSP-TW polytope, P[subscript TW], defined as the convex hull of the integer solutions of our model. We show that determining the dimension of P[subscript TW] is strongly NP-complete problem, even if only one time window is present. In this latter case, we provide a minimal equation system for P[subscript TW]. Computational experiments on the new formulation are reported in a companion paper [5] where we show that it outperforms alternative formulations on some classes of problem instances."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling-salesman problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fischetti, Matteo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grötschel, Martin</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108975282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,11</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,11</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360002</subfield></datafield></record></collection> |
id | DE-604.BV017189006 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:14:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360002 |
oclc_num | 37991496 |
open_access_boolean | |
owner | DE-703 DE-188 |
owner_facet | DE-703 DE-188 |
physical | 20 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Ascheuer, Norbert Verfasser aut A polyhedral study of the asymmetric travelling salesman problem with time windows Norbert Ascheuer ; Matteo Fischetti ; Martin Grötschel Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 20 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,11 Abstract: "The asymmetric travelling salesman problem with time windows (ATSP-TW) is a basic model for scheduling and routing applications. In this paper we present a formulation of the problem involving only 0/1- variables associated with the arcs of the underlying digraph. This has the advantage of avoiding additional variables as well as the associated (typically very ineffective) linking constraints. In the formulation, time window restrictions are modelled by means of 'infeasible path elimination' constraints. We present the basic form of these constraints along with some possible strengthenings. Several other classes of valid inequalities derived from related asymmetric travelling salesman problems are also described, along with a lifting theorem. We also study the ATSP-TW polytope, P[subscript TW], defined as the convex hull of the integer solutions of our model. We show that determining the dimension of P[subscript TW] is strongly NP-complete problem, even if only one time window is present. In this latter case, we provide a minimal equation system for P[subscript TW]. Computational experiments on the new formulation are reported in a companion paper [5] where we show that it outperforms alternative formulations on some classes of problem instances." Traveling-salesman problem Fischetti, Matteo Verfasser aut Grötschel, Martin 1948- Verfasser (DE-588)108975282 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,11 (DE-604)BV004801715 1997,11 |
spellingShingle | Ascheuer, Norbert Fischetti, Matteo Grötschel, Martin 1948- A polyhedral study of the asymmetric travelling salesman problem with time windows Traveling-salesman problem |
title | A polyhedral study of the asymmetric travelling salesman problem with time windows |
title_auth | A polyhedral study of the asymmetric travelling salesman problem with time windows |
title_exact_search | A polyhedral study of the asymmetric travelling salesman problem with time windows |
title_full | A polyhedral study of the asymmetric travelling salesman problem with time windows Norbert Ascheuer ; Matteo Fischetti ; Martin Grötschel |
title_fullStr | A polyhedral study of the asymmetric travelling salesman problem with time windows Norbert Ascheuer ; Matteo Fischetti ; Martin Grötschel |
title_full_unstemmed | A polyhedral study of the asymmetric travelling salesman problem with time windows Norbert Ascheuer ; Matteo Fischetti ; Martin Grötschel |
title_short | A polyhedral study of the asymmetric travelling salesman problem with time windows |
title_sort | a polyhedral study of the asymmetric travelling salesman problem with time windows |
topic | Traveling-salesman problem |
topic_facet | Traveling-salesman problem |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT ascheuernorbert apolyhedralstudyoftheasymmetrictravellingsalesmanproblemwithtimewindows AT fischettimatteo apolyhedralstudyoftheasymmetrictravellingsalesmanproblemwithtimewindows AT grotschelmartin apolyhedralstudyoftheasymmetrictravellingsalesmanproblemwithtimewindows |