A package on orthogonal polynomials and special functions:
Abstract: "In many applications (hypergeometric-type) special functions like orthogonal polynomials are needed. For example in more than 50% of the published solutions for the (application-oriented) questions in the 'Problems Section' of SIAM Review special functions occur. In this ar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1996
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1996,53 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In many applications (hypergeometric-type) special functions like orthogonal polynomials are needed. For example in more than 50% of the published solutions for the (application-oriented) questions in the 'Problems Section' of SIAM Review special functions occur. In this article the Mathematica package SpecialFunctions which can be obtained from the URL http://www.zib.de/koepf is introduced [15]. Algorithms to convert between power series representations and their generating functions is the main topic of this package ([8]-[15]), extending the previous package PowerSeries [12]. Moreover the package automatically finds differential and recurrence equations ([13]-[14]) for expressions and for sums (the latter using Zeilberger's algorithm ([23], [18], [13]). As an application the fast computation of polynomial approximations of solutions of linear differential equations with polynomial coefficients is presented. This is the asymptotically fastest known algorithm for series computations, and it is much faster than Mathematica's builtin [sic] Series command if applicable. Many more applications are considered. Finally the package includes implementations supporting the efficient computation of classical continuous and discrete orthogonal polynomials." |
Beschreibung: | 22 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017188100 | ||
003 | DE-604 | ||
005 | 20031006 | ||
007 | t| | ||
008 | 030603s1996 xx |||| 00||| eng d | ||
035 | |a (OCoLC)37759371 | ||
035 | |a (DE-599)BVBBV017188100 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Koepf, Wolfram |d 1953- |e Verfasser |0 (DE-588)136291279 |4 aut | |
245 | 1 | 0 | |a A package on orthogonal polynomials and special functions |c Wolfram Koepf |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1996 | |
300 | |a 22 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1996,53 | |
520 | 3 | |a Abstract: "In many applications (hypergeometric-type) special functions like orthogonal polynomials are needed. For example in more than 50% of the published solutions for the (application-oriented) questions in the 'Problems Section' of SIAM Review special functions occur. In this article the Mathematica package SpecialFunctions which can be obtained from the URL http://www.zib.de/koepf is introduced [15]. Algorithms to convert between power series representations and their generating functions is the main topic of this package ([8]-[15]), extending the previous package PowerSeries [12]. Moreover the package automatically finds differential and recurrence equations ([13]-[14]) for expressions and for sums (the latter using Zeilberger's algorithm ([23], [18], [13]). As an application the fast computation of polynomial approximations of solutions of linear differential equations with polynomial coefficients is presented. This is the asymptotically fastest known algorithm for series computations, and it is much faster than Mathematica's builtin [sic] Series command if applicable. Many more applications are considered. Finally the package includes implementations supporting the efficient computation of classical continuous and discrete orthogonal polynomials." | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Functions, Special | |
650 | 4 | |a Mathematical analysis |x Data processing | |
650 | 4 | |a Orthogonal polynomials | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1996,53 |w (DE-604)BV004801715 |9 1996,53 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010359148 |
Datensatz im Suchindex
_version_ | 1820882503739637760 |
---|---|
adam_text | |
any_adam_object | |
author | Koepf, Wolfram 1953- |
author_GND | (DE-588)136291279 |
author_facet | Koepf, Wolfram 1953- |
author_role | aut |
author_sort | Koepf, Wolfram 1953- |
author_variant | w k wk |
building | Verbundindex |
bvnumber | BV017188100 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37759371 (DE-599)BVBBV017188100 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017188100</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031006</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030603s1996 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37759371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017188100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koepf, Wolfram</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136291279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A package on orthogonal polynomials and special functions</subfield><subfield code="c">Wolfram Koepf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1996,53</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In many applications (hypergeometric-type) special functions like orthogonal polynomials are needed. For example in more than 50% of the published solutions for the (application-oriented) questions in the 'Problems Section' of SIAM Review special functions occur. In this article the Mathematica package SpecialFunctions which can be obtained from the URL http://www.zib.de/koepf is introduced [15]. Algorithms to convert between power series representations and their generating functions is the main topic of this package ([8]-[15]), extending the previous package PowerSeries [12]. Moreover the package automatically finds differential and recurrence equations ([13]-[14]) for expressions and for sums (the latter using Zeilberger's algorithm ([23], [18], [13]). As an application the fast computation of polynomial approximations of solutions of linear differential equations with polynomial coefficients is presented. This is the asymptotically fastest known algorithm for series computations, and it is much faster than Mathematica's builtin [sic] Series command if applicable. Many more applications are considered. Finally the package includes implementations supporting the efficient computation of classical continuous and discrete orthogonal polynomials."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1996,53</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1996,53</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010359148</subfield></datafield></record></collection> |
id | DE-604.BV017188100 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:07:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010359148 |
oclc_num | 37759371 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 22 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Koepf, Wolfram 1953- Verfasser (DE-588)136291279 aut A package on orthogonal polynomials and special functions Wolfram Koepf Berlin Konrad-Zuse-Zentrum für Informationstechnik 1996 22 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1996,53 Abstract: "In many applications (hypergeometric-type) special functions like orthogonal polynomials are needed. For example in more than 50% of the published solutions for the (application-oriented) questions in the 'Problems Section' of SIAM Review special functions occur. In this article the Mathematica package SpecialFunctions which can be obtained from the URL http://www.zib.de/koepf is introduced [15]. Algorithms to convert between power series representations and their generating functions is the main topic of this package ([8]-[15]), extending the previous package PowerSeries [12]. Moreover the package automatically finds differential and recurrence equations ([13]-[14]) for expressions and for sums (the latter using Zeilberger's algorithm ([23], [18], [13]). As an application the fast computation of polynomial approximations of solutions of linear differential equations with polynomial coefficients is presented. This is the asymptotically fastest known algorithm for series computations, and it is much faster than Mathematica's builtin [sic] Series command if applicable. Many more applications are considered. Finally the package includes implementations supporting the efficient computation of classical continuous and discrete orthogonal polynomials." Datenverarbeitung Functions, Special Mathematical analysis Data processing Orthogonal polynomials Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1996,53 (DE-604)BV004801715 1996,53 |
spellingShingle | Koepf, Wolfram 1953- A package on orthogonal polynomials and special functions Datenverarbeitung Functions, Special Mathematical analysis Data processing Orthogonal polynomials |
title | A package on orthogonal polynomials and special functions |
title_auth | A package on orthogonal polynomials and special functions |
title_exact_search | A package on orthogonal polynomials and special functions |
title_full | A package on orthogonal polynomials and special functions Wolfram Koepf |
title_fullStr | A package on orthogonal polynomials and special functions Wolfram Koepf |
title_full_unstemmed | A package on orthogonal polynomials and special functions Wolfram Koepf |
title_short | A package on orthogonal polynomials and special functions |
title_sort | a package on orthogonal polynomials and special functions |
topic | Datenverarbeitung Functions, Special Mathematical analysis Data processing Orthogonal polynomials |
topic_facet | Datenverarbeitung Functions, Special Mathematical analysis Data processing Orthogonal polynomials |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT koepfwolfram apackageonorthogonalpolynomialsandspecialfunctions |