Global inexact Newton multilevel FEM for nonlinear elliptic problems:
Abstract: "The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wh...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1996
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1996,33 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some damping of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An affine conjugate global convergence theory is given, which covers both the exact Newton method (neglecting the occurrence of approximation errors) and inexact Newton-Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a NEWTON- KASKADE code are documented." |
Beschreibung: | 15 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017186641 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t| | ||
008 | 030603s1996 xx d||| |||| 00||| eng d | ||
035 | |a (OCoLC)37235512 | ||
035 | |a (DE-599)BVBBV017186641 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Deuflhard, Peter |d 1944-2019 |e Verfasser |0 (DE-588)108205983 |4 aut | |
245 | 1 | 0 | |a Global inexact Newton multilevel FEM for nonlinear elliptic problems |c Peter Deuflhard ; Martin Weiser |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1996 | |
300 | |a 15 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1996,33 | |
520 | 3 | |a Abstract: "The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some damping of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An affine conjugate global convergence theory is given, which covers both the exact Newton method (neglecting the occurrence of approximation errors) and inexact Newton-Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a NEWTON- KASKADE code are documented." | |
650 | 4 | |a Differential equations, Elliptic | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Finite element method | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
700 | 1 | |a Weiser, Martin |d 1970- |e Verfasser |0 (DE-588)123252040 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1996,33 |w (DE-604)BV004801715 |9 1996,33 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010357825 |
Datensatz im Suchindex
_version_ | 1820882503715520512 |
---|---|
adam_text | |
any_adam_object | |
author | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- |
author_GND | (DE-588)108205983 (DE-588)123252040 |
author_facet | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- |
author_role | aut aut |
author_sort | Deuflhard, Peter 1944-2019 |
author_variant | p d pd m w mw |
building | Verbundindex |
bvnumber | BV017186641 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37235512 (DE-599)BVBBV017186641 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017186641</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030603s1996 xx d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37235512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017186641</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="d">1944-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108205983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global inexact Newton multilevel FEM for nonlinear elliptic problems</subfield><subfield code="c">Peter Deuflhard ; Martin Weiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1996,33</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some damping of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An affine conjugate global convergence theory is given, which covers both the exact Newton method (neglecting the occurrence of approximation errors) and inexact Newton-Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a NEWTON- KASKADE code are documented."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiser, Martin</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123252040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1996,33</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1996,33</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010357825</subfield></datafield></record></collection> |
id | DE-604.BV017186641 |
illustrated | Illustrated |
indexdate | 2025-01-10T17:07:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010357825 |
oclc_num | 37235512 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 15 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Deuflhard, Peter 1944-2019 Verfasser (DE-588)108205983 aut Global inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser Berlin Konrad-Zuse-Zentrum für Informationstechnik 1996 15 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1996,33 Abstract: "The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some damping of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An affine conjugate global convergence theory is given, which covers both the exact Newton method (neglecting the occurrence of approximation errors) and inexact Newton-Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a NEWTON- KASKADE code are documented." Differential equations, Elliptic Differential equations, Partial Finite element method Multigrid methods (Numerical analysis) Weiser, Martin 1970- Verfasser (DE-588)123252040 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1996,33 (DE-604)BV004801715 1996,33 |
spellingShingle | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- Global inexact Newton multilevel FEM for nonlinear elliptic problems Differential equations, Elliptic Differential equations, Partial Finite element method Multigrid methods (Numerical analysis) |
title | Global inexact Newton multilevel FEM for nonlinear elliptic problems |
title_auth | Global inexact Newton multilevel FEM for nonlinear elliptic problems |
title_exact_search | Global inexact Newton multilevel FEM for nonlinear elliptic problems |
title_full | Global inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser |
title_fullStr | Global inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser |
title_full_unstemmed | Global inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser |
title_short | Global inexact Newton multilevel FEM for nonlinear elliptic problems |
title_sort | global inexact newton multilevel fem for nonlinear elliptic problems |
topic | Differential equations, Elliptic Differential equations, Partial Finite element method Multigrid methods (Numerical analysis) |
topic_facet | Differential equations, Elliptic Differential equations, Partial Finite element method Multigrid methods (Numerical analysis) |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT deuflhardpeter globalinexactnewtonmultilevelfemfornonlinearellipticproblems AT weisermartin globalinexactnewtonmultilevelfemfornonlinearellipticproblems |